scholarly journals Genome Mining as New Challenge in Natural Products Discovery

Marine Drugs ◽  
2020 ◽  
Vol 18 (4) ◽  
pp. 199 ◽  
Author(s):  
Luisa Albarano ◽  
Roberta Esposito ◽  
Nadia Ruocco ◽  
Maria Costantini

Drug discovery is based on bioactivity screening of natural sources, traditionally represented by bacteria fungi and plants. Bioactive natural products and their secondary metabolites have represented the main source for new therapeutic agents, used as drug leads for new antibiotics and anticancer agents. After the discovery of the first biosynthetic genes in the last decades, the researchers had in their hands the tool to understand the biosynthetic logic and genetic basis leading to the production of these compounds. Furthermore, in the genomic era, in which the number of available genomes is increasing, genome mining joined to synthetic biology are offering a significant help in drug discovery. In the present review we discuss the importance of genome mining and synthetic biology approaches to identify new natural products, also underlining considering the possible advantages and disadvantages of this technique. Moreover, we debate the associated techniques that can be applied following to genome mining for validation of data. Finally, we review on the literature describing all novel natural drugs isolated from bacteria, fungi, and other living organisms, not only from the marine environment, by a genome-mining approach, focusing on the literature available in the last ten years.

2020 ◽  
Author(s):  
Yunchang Xie ◽  
Jiawen Chen ◽  
Bo Wang ◽  
Tai Chen ◽  
Junyu Chen ◽  
...  

Abstract Backgrounds: Activation of silent biosynthetic gene clusters (BGCs) in marine-derived actinomycete strains is a feasible strategy to discover bioactive natural products. Actinoalloteichus sp. AHMU CJ021, isolated from the seashore, was shown to contain an intact but silent caerulomycin A (CRM A) BGC-cam in its genome. Thus, a genome mining work was preformed to activate the strain’s bioproduction of CRM A, an immunosuppressive drug lead with diverse bioactivities.Results: To well activate the expression of cam, ribosomal engineering was adopted to treat the wild type Actinoalloteichus sp. AHMU CJ021. The initial mutant strain XC-11G with gentamycin resistance and CRM A bioproduction titer of 42.51 ± 4.22 mg/L was selected from all generated mutant strains by gene expression comparison of the essential biosynthetic gene-camE. The titer of CRM A bioproduction was then improved by two strain breeding methods via UV mutagenesis and cofactor engineering-directed increasing of intracellular riboflavin, which finally generated the optimal mutant strain XC-11GUR with a CRM A bioproduction titer of 113.91 ± 7.58 mg/L. Subsequently, this titer of strain XC-11GUR was improved to 618.61 ± 16.29 mg/L through medium optimization together with further adjustment derived from response surface methodology. In terms of this 14.7 folds increase in the titer of CRM A compared to the initial value, strain XC-GUR could be a well alternative strain for CRM A development.Conclusions: Our results have constructed an ideal CRM A producer. More importantly, our efforts also have demonstrated the effectiveness of abovementioned combinatorial strategies, which is applicable to the genome mining of bioactive natural products from abundant actinomycetes strains.


2020 ◽  
Author(s):  
Yunchang Xie ◽  
Jiawen Chen ◽  
Bo Wang ◽  
Tai Chen ◽  
Junyu Chen ◽  
...  

Abstract Backgrounds: Activation of silent biosynthetic gene clusters (BGCs) in marine-derived actinomycete strains is a feasible strategy to discover bioactive natural products. Actinoalloteichus sp. AHMU CJ021, isolated from the seashore, was shown to contain an intact but silent caerulomycin A (CRM A) BGC-cam in its genome. Thus, a genome mining work was preformed to activate the strain’s production of CRM A, an immunosuppressive drug lead with diverse bioactivities.Results: To well activate the expression of cam, ribosome engineering was adopted to treat the wild type Actinoalloteichus sp. AHMU CJ021. The initial mutant strain XC-11G with gentamycin resistance and CRM A production titer of 42.51 ± 4.22 mg/L was selected from all generated mutant strains by gene expression comparison of the essential biosynthetic gene-camE. The titer of CRM A production was then improved by two strain breeding methods via UV mutagenesis and cofactor engineering-directed increase of intracellular riboflavin, which finally generated the optimal mutant strain XC-11GUR with a CRM A production titer of 113.91 ± 7.58 mg/L. Subsequently, this titer of strain XC-11GUR was improved to 618.61 ± 16.29 mg/L through medium optimization together with further adjustment derived from response surface methodology. In terms of this 14.6 folds increase in the titer of CRM A compared to the initial value, strain XC-GUR could be a well alternative strain for CRM A development.Conclusions: Our results have constructed an ideal CRM A producer. More importantly, our efforts also have demonstrated the effectiveness of abovementioned combinatorial strategies, which is applicable to the genome mining of bioactive natural products from abundant actinomycetes strains.


2020 ◽  
Author(s):  
Yunchang Xie ◽  
Jiawen Chen ◽  
Bo Wang ◽  
Tai Chen ◽  
Junyu Chen ◽  
...  

Abstract Backgrounds: Activation of silent biosynthetic gene clusters (BGCs) in marine-derived actinomycete strains is a feasible strategy to discover bioactive natural products. Actinoalloteichus sp. AHMU CJ021, isolated from the seashore, was shown to contain an intact but silent caerulomycin A (CRM A) BGC- cam in its genome. Thus, a genome mining work was preformed to activate the strain’s production of CRM A, an immunosuppressive drug lead with diverse bioactivities.Results: To well activate the expression of cam , ribosome engineering was adopted to treat the wild type Actinoalloteichus sp. AHMU CJ021. The initial mutant strain XC-11G with gentamycin resistance and CRM A production titer of 42.51 ± 4.22 mg/L was selected from all generated mutant strains by gene expression comparison of the essential biosynthetic gene-camE. The titer of CRM A production was then improved by two strain breeding methods via UV mutagenesis and cofactor engineering-directed increase of intracellular riboflavin, which finally generated the optimal mutant strain XC-11GUR with a CRM A production titer of 113.91 ± 7.58 mg/L. Subsequently, this titer of strain XC-11GUR was improved to 618.61 ± 16.29 mg/L through medium optimization together with further adjustment derived from response surface methodology. In terms of this 14.6 folds increase in the titer of CRM A compared to the initial value, strain XC-GUR could be a well alternative strain for CRM A development.Conclusions: Our results have constructed an ideal CRM A producer. More importantly, our efforts also have demonstrated the effectiveness of abovementioned combinatorial strategies, which is applicable to the genome mining of bioactive natural products from abundant actinomycetes strains.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Yunchang Xie ◽  
Jiawen Chen ◽  
Bo Wang ◽  
Tai Chen ◽  
Junyu Chen ◽  
...  

Abstract Background Activation of silent biosynthetic gene clusters (BGCs) in marine-derived actinomycete strains is a feasible strategy to discover bioactive natural products. Actinoalloteichus sp. AHMU CJ021, isolated from the seashore, was shown to contain an intact but silent caerulomycin A (CRM A) BGC-cam in its genome. Thus, a genome mining work was preformed to activate the strain’s production of CRM A, an immunosuppressive drug lead with diverse bioactivities. Results To well activate the expression of cam, ribosome engineering was adopted to treat the wild type Actinoalloteichus sp. AHMU CJ021. The initial mutant strain XC-11G with gentamycin resistance and CRM A production titer of 42.51 ± 4.22 mg/L was selected from all generated mutant strains by gene expression comparison of the essential biosynthetic gene-camE. The titer of CRM A production was then improved by two strain breeding methods via UV mutagenesis and cofactor engineering-directed increase of intracellular riboflavin, which finally generated the optimal mutant strain XC-11GUR with a CRM A production titer of 113.91 ± 7.58 mg/L. Subsequently, this titer of strain XC-11GUR was improved to 618.61 ± 16.29 mg/L through medium optimization together with further adjustment derived from response surface methodology. In terms of this 14.6 folds increase in the titer of CRM A compared to the initial value, strain XC-GUR could be a well alternative strain for CRM A development. Conclusions Our results had constructed an ideal CRM A producer. More importantly, our efforts also had demonstrated the effectiveness of abovementioned combinatorial strategies, which is applicable to the genome mining of bioactive natural products from abundant actinomycetes strains.


2021 ◽  
Vol 21 (17) ◽  
pp. 1517-1518
Author(s):  
Dharmendra Kumar Yadav

The discovery and utilization of novel metabolites from natural sources are gaining momentum in the present era. The drug discovery programs have witnessed a remarkable shift from conventional medicines to exploiting natural products and their “value addition”, for treating lifethreatening diseases. The global outbreak of life-threatening diseases namely Ebola, SARS,including infections of the bloodstream (bacteremia), heart valves (endocarditis), lungs (pneumonia), and brain (meningitis) and AIDS calls for a more targeted approach to effectively combat the emerging diseases. In the present scenario, natural products and their extracts are being explored extensively for the treatment of various life threatening diseases. In this thematic issue, several review articles contributed by the scientist and researchers in the different areas of medicinal chemistry, synthetic chemistry, new emerging multi-drug targets were collected. This issue begins with a review article on the “Chemistry and Pharmacology of Natural Catechins from Camellia sinensis as anti-MRSA agents” by Gaur et al. and focuses on the spread of MRSA strains is of great concern because of limited treatment options for staphylococcal infections, since these strains are resistant to the entire class of β-lactam antibiotics. In addition, MRSA exhibits resistance to other classes of antimicrobial agents such as fluoroquinolones, cephalosporins, aminoglycosides, macrolide and even glycopeptides (vancomycin and teicoplanine), leading to the emergence of resistant strains such as glycopeptide intermediate (GISA) and resistant strain (GRSA) of S. aureus. In this review, chemical constituents responsible for the anti-MRSA activity of tea are explored [1]. The next article of this issue is a review article on the “Recent Advancements in the Synthesis and Chemistry of Benzofused Nitrogen- and Oxygen-based Bioactive Heterocycles” by Sharma et al. which focuses on medicinal importance of these bioactive benzo-fused heterocycles; special attention has been given to their synthesis as well as medicinal/pharmaceutical properties in detail [2]. “Trends in pharmaceutical design of Endophytes as anti-infective,” by Tiwari et al., is the third article in this issue. The review focused on the meta-analysis of bioactive metabolite production from endophytes, extensively discussing the bioprospection of natural products for pharmaceutical applications. In light of the emerging importance of endophytes as antiinfective agents, an exploration of the pharmaceutical design of novel chemical entities and analogues has enabled efficient and cost-effective drug discovery programs. However, bottlenecks in endophytic biology and research requires a better understanding of endophytic dynamics and mechanism of bioactive metabolite production towards a sustainable drug discovery program [3]. The last article of this issue is also research article on “Recent development of tetrahydro-quinoline/isoquinoline based compounds as anticancer agents” by Yadav et al. The article reported the synthesis of potent tetrahydroquinoline/isoquinoline molecules of the last 10 years with their anticancer properties in various cancer cell lines and stated their half-maximal inhibitory concentration (IC50). In addition, we also considered the discussion of molecular docking and structural activity relationship wherever provided to understand the possible mode of activity an target involved and structural features responsible for the better activity, so the reader can directly find detail for designing new anticancer agents. [4]. Finally I would like to thank all authors who contributed to this issue, titled “Recent advances on small molecule medicinal chemistry to treat human diseases”.


mSystems ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Sylvia Kunakom ◽  
Alessandra S. Eustáquio

ABSTRACT The biosynthetic talent of microorganisms has been harnessed for drug discovery for almost a century. Microbial metabolites not only account for the majority of antibiotics available today, but have also led to anticancer, immunosuppressant, and cholesterol-lowering drugs. Yet, inherent challenges of natural products—including inadequate supply and difficulties with structure diversification—contributed to their deprioritization as a source of pharmaceuticals. In recent years, advances in genome sequencing and synthetic biology spurred a renewed interest in natural products. Bacterial genomes encode an abundance of natural products awaiting discovery. Synthetic biology can facilitate not only discovery and improvements in supply, but also structure diversification. This perspective highlights prior accomplishments in the field of synthetic biology and natural products by the scientific community at large, including research from our laboratory. We also provide our opinion as to where we need to go to continue advancing the field.


2018 ◽  
Vol 9 (21) ◽  
pp. 4898-4908 ◽  
Author(s):  
Fabian Panter ◽  
Daniel Krug ◽  
Sascha Baumann ◽  
Rolf Müller

Mining the genome to harvest from the metabolome: a well-directed search for bioactive natural products unearths the pyxidicyclines fromPyxidicoccus.


Sign in / Sign up

Export Citation Format

Share Document