scholarly journals An Al-doped SrTiO3 photocatalyst maintaining sunlight-driven overall water splitting activity for over 1000 h of constant illumination

2019 ◽  
Vol 10 (11) ◽  
pp. 3196-3201 ◽  
Author(s):  
Hao Lyu ◽  
Takashi Hisatomi ◽  
Yosuke Goto ◽  
Masaaki Yoshida ◽  
Tomohiro Higashi ◽  
...  

The development of robust and efficient water splitting photocatalysts overcomes a long-standing barrier to sustainable large-scale solar hydrogen evolution systems.

2018 ◽  
Vol 11 (5) ◽  
pp. 1287-1298 ◽  
Author(s):  
Prashanth W. Menezes ◽  
Chakadola Panda ◽  
Stefan Loos ◽  
Florian Bunschei-Bruns ◽  
Carsten Walter ◽  
...  

The mechanistically distinct and synergistic role of phosphite anions in hydrogen evolution and nickel cations in oxygen evolution have been uncovered for active and durable overall water splitting catalysis in nickel phosphite.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dingwang Huang ◽  
Lintao Li ◽  
Kang Wang ◽  
Yan Li ◽  
Kuang Feng ◽  
...  

AbstractA highly efficient, low-cost and environmentally friendly photocathode with long-term stability is the goal of practical solar hydrogen evolution applications. Here, we found that the Cu3BiS3 film-based photocathode meets the abovementioned requirements. The Cu3BiS3-based photocathode presents a remarkable onset potential over 0.9 VRHE with excellent photoelectrochemical current densities (~7 mA/cm2 under 0 VRHE) and appreciable 10-hour long-term stability in neutral water solutions. This high onset potential of the Cu3BiS3-based photocathode directly results in a good unbiased operating photocurrent of ~1.6 mA/cm2 assisted by the BiVO4 photoanode. A tandem device of Cu3BiS3-BiVO4 with an unbiased solar-to-hydrogen conversion efficiency of 2.04% is presented. This tandem device also presents high stability over 20 hours. Ultimately, a 5 × 5 cm2 large Cu3BiS3-BiVO4 tandem device module is fabricated for standalone overall solar water splitting with a long-term stability of 60 hours.


2021 ◽  
Author(s):  
Xunliang Hu ◽  
Irshad Hussain ◽  
Bien Tan

Abstract Covalent triazine frameworks (CTFs) have recently been demonstrated as promising materials for photocatalytic water splitting and are usually used in the form of suspended powder. From a practical point of view, immobilized CTFs materials are more suitable for large-scale water splitting applications, owing to their convenient separation and recycling potential. However, existing synthetic approaches mainly result in insoluble and unprocessable powders, which makes their future device application still a huge challenge. Herein, we report an aliphatic amine-assisted interfacial polymerization method to obtain free-standing, crystalline CTFs film with excellent photoelectric performance. The lateral size of the film was up to 250 cm2, the average thickness can be regulated from 30-500 nm. The crystalline structure was confirmed by high-resolution transmission electron microscope (HR-TEM), powder X-ray diffraction (PXRD), and small-angle X-ray scattering (SAXS) analysis. Intrigued by the good light absorption, crystalline structure, and big lateral size of the film, it was immobilized on a glass support that exhibited good photocatalytic hydrogen evolution performance (5.4 mmol h-1 m-2) and was easy to recycle.


RSC Advances ◽  
2017 ◽  
Vol 7 (73) ◽  
pp. 46286-46296 ◽  
Author(s):  
Nan Zhang ◽  
Junyu Lei ◽  
Jianpeng Xie ◽  
Haiyan Huang ◽  
Ying Yu

A novel 3D hierarchical bifunctional catalytic electrode, MoS2/Ni3S2 nanorod arrays well-aligned on NF exhibited excellent electrocatalytic efficiency for hydrogen evolution reaction, oxygen evolution reaction and overall water splitting.


Author(s):  
Hanwen Xu ◽  
Jiawei Zhu ◽  
Pengyan Wang ◽  
Ding Chen ◽  
Chengtian Zhang ◽  
...  

Rational design and construction of high-efficiency bifunctional catalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial for large-scale hydrogen production by water splitting. Herein, by a...


2018 ◽  
Vol MA2018-01 (31) ◽  
pp. 1922-1922
Author(s):  
Hiroyuki Kaneko ◽  
Tsutomu Minegishi ◽  
Kazunari Domen

Overall water splitting using a photoelectrochemical (PEC) cell composed of a photocathode and photoanode connected in a series is an attractive method to produce hydrogen from water under sunlight. Because driving forces of two photoelectrodes are combined for the water splitting reaction, narrow-gap materials can be used to achieve high solar-to-hydrogen conversion efficiency (STH). However, the STHs obtained from a PEC cell without any external bias voltage reported so far have been less than 1%. This is because of insufficient onset potentials and photocurrent values of photoelectrodes. For the sake of overcoming the drawbacks, (ZnSe)0.85(CuIn0.7Ga0.3Se2)0.15 ((ZnSe)0.85(CIGS)0.15) thin film photocathodes have recently been developed and reported to show a high onset potential of 0.89 VRHE and long absorption edge of 850-900 nm.2 These properties are suitable for use in the PEC cell. (ZnSe)0.85(CIGS)0.15 thin films are prepared by co-evaporation onto Mo-coated soda-lime glass substrates. Subsequently, CdS, a binary of Mo/Ti and Pt are deposited onto the photocathode surface as a buffer layer, surface conductor and hydrogen evolution reaction (HER) catalyst, respectively.3 The surface-modified (ZnSe)0.85(CIGS)0.15 photocathodes show a relatively high photocurrent value of 12 mA cm-2 at 0 VRHE and sufficient stability in a span of hours at potentials of more negative than 0.5 VRHE under simulated sunlight in a neutral potassium phosphate buffer solution.4 However, at potentials more positive than 0.5 VRHE, the photocurrent value attributed to HER dramatically decreases by half in just one hour mainly due to self-oxidation of the surface sulfide layer, accompanying detachment of the Mo/Ti and Pt at the surface. The poor stability at the positive potentials has made it difficult to construct durable PEC cell using the photocathodes. In this work, effects of surface modifications onto PEC properties of (ZnSe)0.85(CIGS)0.15 photocathodes are investigated. For the sake of suppressing the surface corrosion, the CdS layer was passivated with In2S3, which was formed by using chemical bath deposition (CBD).5 Figure 1 shows the current-time curves of the surface-modified (ZnSe)0.85(CIGS)0.15 photocathodes at 0.6 VRHE under simulated sunlight. Without the CBD treatment, the photocurrent value decreased by 50% in one hour under light irradiation. On the other hand, the In2S3-modified photocathode showed relatively stable PEC HER and the decline of the photocurrent value in one hour was decreased to 25%. It is highly possible that the improvement of stability originates from low solubility of indium oxide or hydroxide generated by the self-oxidation process, while the cadmium oxide and hydroxide are relatively soluble, which can cause corrosion of the surface. Furthermore, effects of oxide-coating onto the stability of the (ZnSe)0.85(CIGS)0.15 photocathode during PEC hydrogen evolution have also been investigated. Among various kinds of coating processes, direct formation of the oxide layer by photoelectrodeposition without annealing the photocathode is an effective method without exerting a bad influence on the underlying sulfide and selenide materials. In the presentation, the details of preparation conditions and PEC properties will be discussed. References J. W. Ager, M. R. Shaner, K. A. Walczak, I. D. Sharp and S. Ardo, Energy Environ. Sci. 2015, 8, 2811–2824. H. Kaneko, T. Minegishi, M. Nakabayashi, N. Shibata, Y. Kuang, T. Yamada and K. Domen, Adv. Funct. Mater. 2016, 26, 4570–4577. H. Kumagai, T. Minegishi, N. Sato, T. Yamada, J. Kubota and K. Domen, J. Mater. Chem. A 2015, 3, 8300–8307. H. Kaneko, T. Minegishi, M. Nakabayashi, N. Shibata and K. Domen, Angew. Chemie Int. Ed. 2016, 55, 15329–15333. F. Jiang, Gunawan, T. Harada, Y. Kuang, T. Minegishi, K. Domen and S. Ikeda, J. Am. Chem. Soc. 2015, 137, 13691–13697. Figure 1


Sign in / Sign up

Export Citation Format

Share Document