Immobilized Covalent Triazine Frameworks Films as Effective Photocatalysts for Hydrogen Evolution Reaction

Author(s):  
Xunliang Hu ◽  
Irshad Hussain ◽  
Bien Tan

Abstract Covalent triazine frameworks (CTFs) have recently been demonstrated as promising materials for photocatalytic water splitting and are usually used in the form of suspended powder. From a practical point of view, immobilized CTFs materials are more suitable for large-scale water splitting applications, owing to their convenient separation and recycling potential. However, existing synthetic approaches mainly result in insoluble and unprocessable powders, which makes their future device application still a huge challenge. Herein, we report an aliphatic amine-assisted interfacial polymerization method to obtain free-standing, crystalline CTFs film with excellent photoelectric performance. The lateral size of the film was up to 250 cm2, the average thickness can be regulated from 30-500 nm. The crystalline structure was confirmed by high-resolution transmission electron microscope (HR-TEM), powder X-ray diffraction (PXRD), and small-angle X-ray scattering (SAXS) analysis. Intrigued by the good light absorption, crystalline structure, and big lateral size of the film, it was immobilized on a glass support that exhibited good photocatalytic hydrogen evolution performance (5.4 mmol h-1 m-2) and was easy to recycle.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xunliang Hu ◽  
Zhen Zhan ◽  
Jianqiao Zhang ◽  
Irshad Hussain ◽  
Bien Tan

AbstractCovalent triazine frameworks have recently been demonstrated as promising materials for photocatalytic water splitting and are usually used in the form of suspended powder. From a practical point of view, immobilized CTFs materials are more suitable for large-scale water splitting, owing to their convenient separation and recycling potential. However, existing synthetic approaches mainly result in insoluble and unprocessable powders, which make their future device application a formidable challenge. Herein, we report an aliphatic amine-assisted interfacial polymerization method to obtain free-standing, semicrystalline CTFs film with excellent photoelectric performance. The lateral size of the film was up to 250 cm2, and average thickness can be tuned from 30 to 500 nm. The semicrystalline structure was confirmed by high-resolution transmission electron microscope, powder X-ray diffraction, grazing-incidence wide-angle X-ray scattering, and small-angle X-ray scattering analysis. Intrigued by the good light absorption, crystalline structure, and large lateral size of the film, the film immobilized on a glass support exhibited good photocatalytic hydrogen evolution performance (5.4 mmol h−1 m−2) with the presence of co-catalysts i.e., Pt nanoparticles and was easy to recycle.


Hydrogen ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 11-21
Author(s):  
Youyi Sun ◽  
Alexey Y. Ganin

Metal alloys have become a ubiquitous choice as catalysts for electrochemical hydrogen evolution in alkaline media. However, scarce and expensive Pt remains the key electrocatalyst in acidic electrolytes, making the search for earth-abundant and cheaper alternatives important. Herein, we present a facile and efficient synthetic route towards polycrystalline Co3Mo and Co7Mo6 alloys. The single-phased nature of the alloys is confirmed by X-ray diffraction and electron microscopy. When electrochemically tested, they achieve competitively low overpotentials of 115 mV (Co3Mo) and 160 mV (Co7Mo6) at 10 mA cm−2 in 0.5 M H2SO4, and 120 mV (Co3Mo) and 160 mV (Co7Mo6) at 10 mA cm−2 in 1 M KOH. Both alloys outperform Co and Mo metals, which showed significantly higher overpotentials and lower current densities when tested under identical conditions, confirming the synergistic effect of the alloying. However, the low overpotential in Co3Mo comes at the price of stability. It rapidly becomes inactive when tested under applied potential bias. On the other hand, Co7Mo6 retains the current density over time without evidence of current decay. The findings demonstrate that even in free-standing form and without nanostructuring, polycrystalline bimetallic electrocatalysts could challenge the dominance of Pt in acidic media if ways for improving their stability were found.


Author(s):  
Hanwen Xu ◽  
Jiawei Zhu ◽  
Pengyan Wang ◽  
Ding Chen ◽  
Chengtian Zhang ◽  
...  

Rational design and construction of high-efficiency bifunctional catalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial for large-scale hydrogen production by water splitting. Herein, by a...


Catalysts ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1048 ◽  
Author(s):  
JingCheng Xu ◽  
JiaJia Zhang ◽  
ZhengYang Cai ◽  
He Huang ◽  
TianHao Huang ◽  
...  

In the work, we firstly report the facile and large-scale synthesis of defective black TiO2−x(B) nanosheets via a dual-zone NaBH4 reduction method. The structure, physico-chemical, and optical properties of TiO2−x(B) nanosheets were systematically characterized by powder X-ray diffraction, Raman spectroscopy, UV-Vis absorption spectroscopy, and X-ray photoelectron spectroscopy, etc. The concentration of Ti3+ can be well tuned by NaBH4 reduction. With increasing the mass ratio of NaBH4 to TiO2(B), the generation of Ti3+ defects gives rise to the increased intensity of a broad band absorption in the visible wavelength range. It is demonstrated that the TiO2−x(B) photocatalyst synthesized with the mass ratio of NaBH4 to TiO2(B) of 3:1 exhibited an optimum photocatalytic activity and excellent photostability for hydrogen evolution under visible-light irradiation. By combining the advantages of 2D TiO2(B) nanosheets architecture with those of Ti3+ self-doping and simultaneous production of oxygen vacancy sites, the enhanced photocatalytic performance of the defective TiO2−x(B) nanosheets was achieved.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Karolina Kordek-Khalil ◽  
Dawid Janas ◽  
Piotr Rutkowski

AbstractLarge-scale sustainable hydrogen production by water electrolysis requires a highly active yet low-cost hydrogen evolution reaction (HER) electrocatalyst. Conductive carbon nanomaterials with high surface areas are promising candidates for this purpose. In this contribution, single-walled carbon nanotubes (SWCNTs) are assembled into free-standing films and directly used as HER electrodes. During the initial 20 h of electrocatalytic performance in galvanostatic conditions, the films undergo activation, which results in a gradual overpotential decrease to the value of 225 mV. Transient physicochemical properties of the films at various activation stages are characterized to reveal the material features responsible for the activity boost. Results indicate that partial oxidation of iron nanoparticles encapsulated in SWCNTs is the major contributor to the activity enhancement. Furthermore, besides high activity, the material, composed of only earth-abundant elements, possesses exceptional performance stability, with no activity loss for 200 h of galvanostatic performance at − 10 mA cm−2. In conclusion, the work presents the strategy of engineering a highly active HER electrode composed of widely available elements and provides new insights into the origins of electrocatalytic performance of SWCNT-based materials in alkaline HER.


Nanoscale ◽  
2019 ◽  
Vol 11 (48) ◽  
pp. 23318-23329 ◽  
Author(s):  
Lina Jia ◽  
Chen Li ◽  
Yaru Zhao ◽  
Bitao Liu ◽  
Shixiu Cao ◽  
...  

Non-precious metal-based electrocatalysts with high activity and stability for efficient hydrogen evolution reactions are of critical importance for low-cost and large-scale water splitting.


Author(s):  
Z.G. Li ◽  
Paul J. Fagan

Since the discovery of a large scale synthesis of fullerenes there has been intense interest in the structure of these materials. The first diffraction data suggested that crystalline C60 had a hexagonal close-packed (hep) structure with a nearest neighbor distance of 10.04 Å. The possibility of a disordered stacking of C60 molecules was first noted in this study. Since then, there has been some confusion regarding the exact crystalline structure of C60 as determined by electron and X-ray diffraction. In particular, a diffraction feature corresponding to a spacing of 8.7 Å has been noted in several studies. Recendy there had been a growing consensus that fcc is the correct structure for sublimed C60. Although the internal carbon atom arrangement of the C60 molecules cannot be determined, the actual packing and defects in C60 crystals over small and relatively large regions are readily seen by HRTEM. We have found by direct imaging a relatively large region of defect-free hep packing of C60 spheres sublimed onto a relatively cool microscopy grid.


Author(s):  
Sk. Riyajuddin ◽  
Jenifar Sultana ◽  
Shumile Ahmed Siddiqui ◽  
Sushil Kumar ◽  
Damini Badhwar ◽  
...  

Photoelectrochemical (PEC) water splitting propels a broader research interest for large-scale and facile entrapment of solar energy in hydrogen fuel. It offers the most favorable and environment-friendly approach to harvest...


2021 ◽  
Author(s):  
Tian-Yun Chen ◽  
Ya-Qi Zhang ◽  
Ying-Yan Fu ◽  
Min Qian ◽  
Hao-Jiang Dai ◽  
...  

Abstract Hydrogen energy is regarded as one of the most important clean energy in the 21st century, and improving the catalytic efficiency of hydrogen evolution reaction (HER) is the basis for realizing the large-scale hydrogen production. Transition metal phosphides (TMPs) were proved to be efficient electrocatalysts for HER. In this work, we first synthesized the nickel-molybdenum bimetallic precursors, followed by high-temperature calcination in air. Finally, NiMoP/MoP nanorods (Ni-Mo-P NRs) was obtained by chemical vapor deposition (CVD) of phosphating. The target catalyst of Ni-Mo-P NRs was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). For Ni-Mo-P NRs, the electrochemical test in 0.5 M H2SO4 solution for HER showed that the optimal feeding ratio was Ni: Mo = 1:1. And the Ni1-Mo1-P NRs presented an onset potential of 63.2 mV, and an overpotential of 117.9 mV was required to drive the current density of 10 mA↔cm− 2. Meanwhile, The Tafel slope, exchange current density (j0), electrochemical double-layer capacitance (Cdl) were 58.6 mV↔dec− 1, 0.10 mA↔cm− 2, 12.6 mF↔cm− 2, respectively. Moreover, there was no obvious activity diminish of Ni1-Mo1-P NRs after a long-term stability and durability test.


2019 ◽  
Vol 10 (11) ◽  
pp. 3196-3201 ◽  
Author(s):  
Hao Lyu ◽  
Takashi Hisatomi ◽  
Yosuke Goto ◽  
Masaaki Yoshida ◽  
Tomohiro Higashi ◽  
...  

The development of robust and efficient water splitting photocatalysts overcomes a long-standing barrier to sustainable large-scale solar hydrogen evolution systems.


Sign in / Sign up

Export Citation Format

Share Document