Low-valence bicomponent (FeO)x(MnO)1−x nanocrystals embedded in amorphous carbon as high-performance anode materials for lithium storage

2018 ◽  
Vol 6 (31) ◽  
pp. 15274-15283 ◽  
Author(s):  
Guiqiang Diao ◽  
Muhammad-Sadeeq Balogun ◽  
Si-Yao Tong ◽  
Xianzi Guo ◽  
Xue Huang ◽  
...  

Nearly uniform monodisperse bicomponent iron manganese oxide, (FeO)x(MnO)1−x nanocrystals encapsulated in amorphous carbon was used as a high-performance anode material for lithium ion batteries.

2019 ◽  
Vol 7 (27) ◽  
pp. 16541-16552 ◽  
Author(s):  
Xuefang Xie ◽  
Yang Hu ◽  
Guozhao Fang ◽  
Xinxin Cao ◽  
Bo Yin ◽  
...  

In situ formed hierarchical FeS nanosheets supported by a TiO2/C fibrous backbone exhibit higher rate capability and cycling stability as anode materials for lithium ion batteries.


2019 ◽  
Vol 34 (01n03) ◽  
pp. 2040011
Author(s):  
Bowen Dong ◽  
Bingbing Deng ◽  
Yangai Liu

Silicon, an anode material for lithium ion batteries, has the highest theoretical specific capacity ([Formula: see text] mAh/g). The actual lithium storage capacity of [Formula: see text] mAh/g is about 10 times that of the graphite anode materials class. This study involves magnesium heat reduction of the SiO2 preparation of silicon carbon composites. The Si/SiC composite shows a high initial specific capacity of 1406.7 mAh/g with a current density of 0.1 A/g. The morphology and pore size inherited from the SiO2 aerogel counteracts the volume expansion during the lithiation/delithiation process. This paper provides an articulate methodology for designing silicon anode material for high-performance rechargeable lithium-ion batteries.


2019 ◽  
Vol 7 (14) ◽  
pp. 8460-8471 ◽  
Author(s):  
Joseph F. S. Fernando ◽  
Chao Zhang ◽  
Konstantin L. Firestein ◽  
Jawahar Y. Nerkar ◽  
Dmitri V. Golberg

The role of the carbonaceous component in the excellent (de)lithiation properties of a ZnO/carbon anode material, as revealed by in situ TEM.


Nanoscale ◽  
2021 ◽  
Author(s):  
Lei Hu ◽  
Qiushi Wang ◽  
Xiandong Zhu ◽  
Tao Meng ◽  
Binbin Huang ◽  
...  

Iron oxide nanoparticles embedded in S,N dual-doped carbon through pyrolysis of novel Fe4-based metal–organic clusters are fabricated and utilized as potential anode materials for lithium ion batteries in both half- and full-cells.


2019 ◽  
Vol 7 (40) ◽  
pp. 23019-23027 ◽  
Author(s):  
Zongfeng Sha ◽  
Shengqiang Qiu ◽  
Qing Zhang ◽  
Zhiyong Huang ◽  
Xun Cui ◽  
...  

A solvothermal polymerization approach to graphene/poly(methyl methacrylate) thermoplastic nanocomposites as low-cost alternative anode materials with superior lithium storage capability.


2017 ◽  
Vol 41 (16) ◽  
pp. 7960-7965 ◽  
Author(s):  
Li Li ◽  
Zichao Zhang ◽  
Sijia Ren ◽  
Bingke Zhang ◽  
Shuhua Yang ◽  
...  

We report on hollow Co3O4cubes synthesizedviaa self-sacrificing template method and their application as an anode material for reversible electrochemical lithium storage.


2015 ◽  
Vol 39 (11) ◽  
pp. 8416-8423 ◽  
Author(s):  
Xiaoyu Wu ◽  
Songmei Li ◽  
Bo Wang ◽  
Jianhua Liu ◽  
Mei Yu

Various micro/nano-structured MnCo2O4 with excellent lithium storage performance were synthesized controllably.


RSC Advances ◽  
2015 ◽  
Vol 5 (72) ◽  
pp. 58514-58521 ◽  
Author(s):  
Dongsheng Guan ◽  
Jianyang Li ◽  
Xianfeng Gao ◽  
Chris Yuan

Composite of ultrathin SnS2 and SnO2 nanoflakes with conducting multiwalled carbon nanotube matrix as superior anode materials for lithium-ion batteries.


2017 ◽  
Vol 5 (9) ◽  
pp. 4535-4542 ◽  
Author(s):  
Xiang Hu ◽  
Guang Zeng ◽  
Junxiang Chen ◽  
Canzhong Lu ◽  
Zhenhai Wen

H-SnO2@rGO with interconnected graphene encapsulating interior hollow SnO2 nanospheres is designed and fabricated, which shows outstanding lithium storage properties.


2014 ◽  
Vol 2 (48) ◽  
pp. 20706-20713 ◽  
Author(s):  
Jisheng Zhou ◽  
Jingming Li ◽  
Kunhong Liu ◽  
Ling Lan ◽  
Huaihe Song ◽  
...  

Co(OH)2 arrays/GNSs composites, which are constructed by preferentially oriented growth, exhibit a high-performance when used as anode materials for lithium-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document