Design and preparation of three-dimensional MnO/N-doped carbon nanocomposites based on waste biomass for high storage and ultra-fast transfer of lithium ions

2018 ◽  
Vol 6 (40) ◽  
pp. 19479-19487 ◽  
Author(s):  
Qiaoxia Feng ◽  
Huanxin Li ◽  
Zhong Tan ◽  
Zhongyuan Huang ◽  
Lanlan Jiang ◽  
...  

Batteries with fast charging capability are urgently needed to meet the rapidly increasing demand for energy storage devices.

Author(s):  
Dan Tu ◽  
Wenyao Yang ◽  
Yi Li ◽  
Yujiu Zhou ◽  
LiuWei Shi ◽  
...  

Abstract: Modified MXene (Ti3C2Tx) is attractive as a flexible electrode for wearable energy storage devices. In this work, a convenient and effective method was proposed to change the conventional 2D...


Nano Research ◽  
2018 ◽  
Vol 11 (5) ◽  
pp. 2836-2846 ◽  
Author(s):  
Mengping Li ◽  
Maher F. El-Kady ◽  
Jee Y. Hwang ◽  
Matthew D. Kowal ◽  
Kristofer Marsh ◽  
...  

ChemSusChem ◽  
2017 ◽  
Vol 10 (8) ◽  
pp. 1642-1642
Author(s):  
Jun Young Oh ◽  
Yeonsu Jung ◽  
Young Shik Cho ◽  
Jaeyoo Choi ◽  
Ji Ho Youk ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 3
Author(s):  
Azadeh Mirabedini ◽  
Zan Lu ◽  
Saber Mostafavian ◽  
Javad Foroughi

The ubiquity of wearables, coupled with the increasing demand for power, presents a unique opportunity for nanostructured fiber-based mobile energy storage systems. When designing wearable electronic textiles, there is a need for mechanically flexible, low-cost and light-weight components. To meet this demand, we have developed an all-in-one fiber supercapacitor with a total thickness of less than 100 μm using a novel facile coaxial wet-spinning approach followed by a fiber wrapping step. The formed triaxial fiber nanostructure consisted of an inner poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) core coated with an ionically conducting chitosan sheath, subsequently wrapped with a carbon nanotube (CNT) fiber. The resulting supercapacitor is highly flexible, delivers a maximum energy density 5.83 Wh kg−1 and an extremely high power of 1399 W kg−1 along with remarkable cyclic stability and specific capacitance. This asymmetric all-in-one fiber supercapacitor may pave the way to a future generation of wearable energy storage devices.


2021 ◽  
Author(s):  
Maria Tariq ◽  
Tajamal Hussain ◽  
Adnan Mujahid ◽  
Mirza Nadeem Ahmad ◽  
Muhammad Imran Din ◽  
...  

With the increasing pressure of population, the energy demand is growing explosively. By 2050, it is expected that the world population may reach to about 9 billion which may result in the increase of energy requirement to about 12.5 trillion watts. Due to increasing pressures of population, industries and technology, concerns to find possibilities to cope with increasing demand of energy resources, arise. Although the renewable energy resources including fossil fuels, wind, water and solar energy have been used for a long time to fulfill the energy requirements, but they need efficient conversions and storage techniques and are responsible for causing environmental pollution due to greenhouse gases as well. It is thus noteworthy to develop methods for the generation and storage of renewable energy devices that can replace the conventional energy resources to meet the requirement of energy consumption. Due to high energy demands, the sustainable energy storage devices have remained the subject of interest for scientists in the history, however, the traditional methods are not efficient enough to fulfill the energy requirements. In the present era, among other variety of advanced treatments, nano-sciences have attracted the attention of the scientists. While talking about nano-science, one cannot move on without admiring the extraordinary features of carbon nanotubes (CNTs) and other carbon based materials. CNTs are on the cutting edge of nano science research and finding enormous applications in energy storage devices. Excellent adsorption capabilities, high surface area, better electrical conductivity, high mechanical strength, corrosion resistance, high aspect ratio and good chemical and physical properties of CNTs have grabbed tremendous attention worldwide. Their charge transfer properties make them favorable for energy conversion applications. The limitation to the laboratory research on CNTs for energy storage techniques due to low specific capacitance and limited electrochemical performance can be overcome by surface functionalization using surface functional groups that can enhance their electrical and dispersion properties. In this chapter, ways CNTs employed to boost the abilities of the existing material used to store and transfer of energy have been discussed critically. Moreover, how anisotropic properties of CNTs play important role in increasing the energy storage capabilities of functional materials. It will also be discussed how various kinds of materials can be combined along CNTs to get better results.


2019 ◽  
Vol 1 (20) ◽  
pp. 37-42
Author(s):  
Hyun Jin In ◽  
Sundeep Kumar ◽  
Yang Shao-Horn ◽  
George Barbastathis

2021 ◽  
Author(s):  
Mengru Ding ◽  
Yuanduo Qu ◽  
Xueyu Zhang ◽  
Lianfeng Duan ◽  
Xuesong Li ◽  
...  

The increasing demand for high performance portable electronic devices has promoted the research of flexible energy storage devices, and various devices have been suggested and investigated.


Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 115
Author(s):  
Xiaoli Wang ◽  
Yin Wang ◽  
Xinyu Zhao

The development of superior electrochemical energy-storage devices designed through a facile, cost-efficient, and green synthesis technique is the key to addressing the intermittent nature of renewable energy sources such as solar and wind energy. In our present work, we design a simple, surfactant-free, and low-temperature chemical strategy to prepare novel integrated, MnO2 composite electrodes with two-dimensional (2D) nanosheet film directly supported on three-dimensional (3D) conductive nickel foam. Benefiting from the specific 2D nanosheet architecture to provide a large interfacial contact area and highly conductive metal scaffolds to facilitate fast electron transfer, the novel nanosheet-assembled MnO2-integrated electrodes exhibit higher specific capacitance of 446 F g−1 at the current density of 1 A g−1 compared with nanostructured MnO2 and commercial MnO2 powder electrodes. More importantly, the as-synthesized devices are able to achieve an outstanding cycling performance of 95% retention after 3000 cycles. The present work, which is based on the low-temperature chemical route to deposit active materials on the conductive substrate, provides new insights into designing a binder-free supercapacitor system to improve the specific capacitance, cycling, and rate performance as next-generation, energy-storage devices.


Sign in / Sign up

Export Citation Format

Share Document