scholarly journals Triaxial Carbon Nanotube/Conducting Polymer Wet-Spun Fibers Supercapacitors for Wearable Electronics

Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 3
Author(s):  
Azadeh Mirabedini ◽  
Zan Lu ◽  
Saber Mostafavian ◽  
Javad Foroughi

The ubiquity of wearables, coupled with the increasing demand for power, presents a unique opportunity for nanostructured fiber-based mobile energy storage systems. When designing wearable electronic textiles, there is a need for mechanically flexible, low-cost and light-weight components. To meet this demand, we have developed an all-in-one fiber supercapacitor with a total thickness of less than 100 μm using a novel facile coaxial wet-spinning approach followed by a fiber wrapping step. The formed triaxial fiber nanostructure consisted of an inner poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) core coated with an ionically conducting chitosan sheath, subsequently wrapped with a carbon nanotube (CNT) fiber. The resulting supercapacitor is highly flexible, delivers a maximum energy density 5.83 Wh kg−1 and an extremely high power of 1399 W kg−1 along with remarkable cyclic stability and specific capacitance. This asymmetric all-in-one fiber supercapacitor may pave the way to a future generation of wearable energy storage devices.

2018 ◽  
Vol 6 (40) ◽  
pp. 19479-19487 ◽  
Author(s):  
Qiaoxia Feng ◽  
Huanxin Li ◽  
Zhong Tan ◽  
Zhongyuan Huang ◽  
Lanlan Jiang ◽  
...  

Batteries with fast charging capability are urgently needed to meet the rapidly increasing demand for energy storage devices.


Author(s):  
Ye Chen ◽  
Xinyu Yin ◽  
Shuyuan Lei ◽  
Xiaojing Dai ◽  
Xilian Xu ◽  
...  

MXene, a class of 2D transition metal carbide/nitride materials, has attracted widespread attention since its first discovery in 2011. Due to its high electronic conductivity, large specific surface area, good mechanical stability, and adjustable surface functional groups, MXene-based nanomaterials have shown great potential in energy storage devices. Meanwhile, zinc-based aqueous energy storage devices became a hotspot recently in energy storage field on account of their high security and low cost. In this review, the research progress on the preparation routes, preserving method, related structure and properties of MXene is first summarized. Followed by is an introduction of the recent state-of-the-art development of MXene-based electrodes for zinc-based aqueous energy storage devices, including zinc ion batteries (ZIBs), zinc-air batteries (ZABs), and zinc-halide batteries (ZHBs). Finally, the major bottleneck and perspectives for MXene-based nanomaterials in zinc-based aqueous energy storage devices are pointed out.


Author(s):  
Dipanwita Majumdar

Polyaniline in various forms has been widely explored as an electrode material for supercapacitors due to its high theoretical charge storage capacity, facile-cost-effective synthesis, good mechanical strength and ultrafast charge transport. However, commercialization of such pristine forms is very much restricted by low solubilities, rapid agglomeration during device design accompanied by poor electrochemical life and fast environmental decomposition. The blending with nano-carbon materials, metal oxides and other competent materials, may result in high quality materials– “nanocomposites” with superior features is ideally fit for future generation energy storage devices. The present chapter deals with detailed discussions on designing, the fabrication of such binary and ternary nanocomposites, correlating their morphology with electrochemical behavior, so as to optimize their supercapacitive performances. Such an attempt would help to outline the present status and future aspects of these materials which will be of first-hand assistance especially to the beginners to this field of research.


Nanoscale ◽  
2020 ◽  
Vol 12 (34) ◽  
pp. 17649-17662 ◽  
Author(s):  
Jayesh Cherusseri ◽  
Deepak Pandey ◽  
Kowsik Sambath Kumar ◽  
Jayan Thomas ◽  
Lei Zhai

Metal–organic frameworks are emerging players in the fabrication of flexible energy storage devices to power flexible and wearable electronics.


2014 ◽  
Vol 245 ◽  
pp. 553-556 ◽  
Author(s):  
Ken Sakaushi ◽  
Eiji Hosono ◽  
Georg Nickerl ◽  
Haoshen Zhou ◽  
Stefan Kaskel ◽  
...  

2011 ◽  
Vol 1323 ◽  
Author(s):  
Boris Gilman ◽  
Igor Altman

ABSTRACTFor successful implementation of the nanomaterial-based PV and Energy storage devices there is a need for well-structured nano films consisting of a strictly controlled sequence of nanoparticle layers. Most promising nano-films include a “built-in” gradient of a nanoparticle size and/or material composition across the part or entire thickness of the film. Such Gradient Multilayer (GML) nano films will be able to significantly improve a PV efficiency of the 3rd generation Solar Cells and Energy storage devices. The development of GML-based devices is presently limited by lack of simple, inexpensive, scalable, and production-worthy deposition methods that are capable of forming GML nano-film on PV-suitable substrates such as flexible materials.The proposed concept describes novel principles of an advanced non-conventional deposition of the highly efficient GML nano films.The proposed GML deposition method is based on the phenomena of Flying Particles (FP). According to the FP-methods a pre-selected mix of nanoparticles (NP) of various size and/or material composition is deposited on a flexible (or other) substrate in a pre-defined order of NP size and/or composition thus forming GML nano film. Deposited GML film comprises a sequence of size-tuned and/or composition-tuned NP layers, which has a potential for significant increase of PV efficiency.The deposition process includes the NPs launch and flight through a resistant gas ambient. Due to the Stokes aerodynamic laws the FP times-to-target will be different for NP of a different size and/or density (material composition). Simulation is presented to confirm the separation of FP”s of a different size and/or density during their motion through the low-pressure gas. The calculations have been made for the initial stages of the FP process thus establishing the most efficient parameters of the process. Resultant GML nano films are expected to have superior qualities, particularly for building high efficiency / low cost PV panels. The FP-method allows for a fast development and easy implementation in PV manufacturing.


Sign in / Sign up

Export Citation Format

Share Document