scholarly journals Enhanced thermoelectric performance of Bi–Sb–Te/Sb2O3 nanocomposites by energy filtering effect

2018 ◽  
Vol 6 (43) ◽  
pp. 21341-21349 ◽  
Author(s):  
Amir Pakdel ◽  
Quansheng Guo ◽  
Valeria Nicolosi ◽  
Takao Mori

24 month high-ZT stability of Bi0.5Sb1.5Te3/Sb2O3 nanocomposites that demonstrate simultaneous Seebeck coefficient enhancement and thermal conductivity decline through energy filtering effect.

2018 ◽  
Vol 11 (04) ◽  
pp. 1850069 ◽  
Author(s):  
Xuerui Liu ◽  
Shuankui Li ◽  
Tinyang Liu ◽  
Weiming Zhu ◽  
Rui Wang ◽  
...  

With the development of nanotechnology, thermoelectric materials with complex heterogeneous nanostructure offer a promising approach to improve the thermoelectric performance. In this work, SnSe/SnS hetero-nanosheet was tuned by the epitaxial growth of SnSe on the few layers of SnS nanosheets. The heterojunction interface can optimize the carrier/phonon transport behavior by energy filtering effect and scattering the phonon in multiple scales. Compared with pristine SnSe, the power factor of SnSe/SnS hetero-nanosheet increases from 2.2[Formula: see text][Formula: see text]V/cmK2 to 3.21[Formula: see text][Formula: see text]V/cmK2 at 773[Formula: see text]K, whereas the thermal conductivity decreases significantly from 0.65[Formula: see text]W[Formula: see text][Formula: see text][Formula: see text]m[Formula: see text] to 0.48[Formula: see text]W[Formula: see text][Formula: see text][Formula: see text]m[Formula: see text] at 773[Formula: see text]K. The maximum ZT of 0.5 is obtained at 773[Formula: see text]K in the SnSe/SnS hetero-nanosheets, which is 89% higher than pristine SnSe. This approach is proved to be a promising strategy to design high performance thermoelectric materials.


2013 ◽  
Vol 743-744 ◽  
pp. 120-125
Author(s):  
Zhen Chen ◽  
Ye Mao Han ◽  
Min Zhou ◽  
Rong Jin Huang ◽  
Yuan Zhou ◽  
...  

In the present study, the glass microsphere dispersed Bi-Sb thermoelectric materials have been fabricated through mechanical alloying followed by pressureless sintering. The phase composition and the microstructure were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. Electrical conductivity, Seebeck coefficient and thermal conductivity were measured in the temperature range of 77~300 K. The ZT values were calculated according to the measurement results. The results showed that the electrical conductivity, Seebeck coefficient and thermal conductivity decreased by adding glass microsphere into Bi-Sb thermoelectric materials. However, the optimum ZT value of 0.24 was obtained at 260 K, which was increased 10% than that of the Bi-Sb matrix. So it is confirmed that the thermoelectric performance of Bi-Sb-based materials can be improved by adding moderate glass microspheres.


2016 ◽  
Vol 4 (20) ◽  
pp. 4538-4545 ◽  
Author(s):  
H. Y. Lv ◽  
W. J. Lu ◽  
D. F. Shao ◽  
H. Y. Lu ◽  
Y. P. Sun

The thermoelectric performance of the ZrS2monolayer is greatly enhanced by the biaxial tensile strain, due to the simultaneous increase of the Seebeck coefficient and decrease of the thermal conductivity.


2015 ◽  
Vol 3 (16) ◽  
pp. 8643-8649 ◽  
Author(s):  
Peng-an Zong ◽  
Xihong Chen ◽  
Yanwu Zhu ◽  
Ziwei Liu ◽  
Yi Zeng ◽  
...  

The construction of a 3D-rGO network architecture dramatically reduced the lattice thermal conductivity and simultaneously enhanced the Seebeck coefficient, leading to a maximum ZT of 1.51.


2020 ◽  
Vol 8 (9) ◽  
pp. 4931-4937 ◽  
Author(s):  
Zhiwei Huang ◽  
Dongyang Wang ◽  
Caiyun Li ◽  
Jinfeng Wang ◽  
Guangtao Wang ◽  
...  

CdTe alloying dramatically enhanced the thermoelectric performance of p-type PbSe by enhancing Seebeck coefficients and reducing electronic thermal conductivity.


2015 ◽  
Vol 08 (06) ◽  
pp. 1550070
Author(s):  
Boyu Zhang ◽  
Jun Wang ◽  
Xinba Yaer ◽  
Zhenzhen Huo ◽  
Yin Wu ◽  
...  

Effect of crystal size distribution on thermoelectric performance of Lanthanum-doped strontium titanate ( La - SrTiO 3) ceramics are investigated in this study. Thermoelectric performance measurement, coupled with microstructure studies, shows that the electrical conductivity strongly depends on the crystal size, potential barrier on the grain boundary and porosity. Meantime, because the average potential barriers height are increased along with the reduction of crystal size, the Seebeck coefficients are increased by energy filtering effect at the large number of grain boundaries. As a result, by controlling of crystal size distribution, ZT value of La - SrTiO 3 is improved.


2018 ◽  
Vol 6 (40) ◽  
pp. 19347-19352 ◽  
Author(s):  
Xin Guan ◽  
Hanlin Cheng ◽  
Jianyong Ouyang

The thermoelectric performance of PEDOT:PSS can be significantly enhanced by energy filtering arising from ion accumulation in the polyelectrolyte layer.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1637 ◽  
Author(s):  
Lihong Huang ◽  
Junchen Wang ◽  
Xiaobo Mo ◽  
Xiaobo Lei ◽  
Sude Ma ◽  
...  

The effects of V vacancy on the thermoelectric performance of the half-Heusler compound VCoSb have been investigated in this study. A certain amount of CoSb secondary phase is generated in the VCoSb matrix when the content of V vacancy is more than 0.1 at%. According to the results, a ZT value of 0.6, together with a power factor of 29 μW cm−1 K−2 at 873 K, were achieved for the nonstoichiometric sample V0.9CoSb. This proved that moderate V vacancy could improve the thermoelectric (TE) properties of VCoSb. The noticeable improvements are mainly owing to the incremental Seebeck coefficient, which may benefit from the optimized carrier concentration. However, too much V vacancy will result in more CoSb impurity and deteriorate the TE performances of VCoSb owing to the increased thermal conductivity.


2014 ◽  
Vol 115 (5) ◽  
pp. 053710 ◽  
Author(s):  
T. H. Zou ◽  
X. Y. Qin ◽  
D. Li ◽  
B. J. Ren ◽  
G. L. Sun ◽  
...  

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 406
Author(s):  
Chao Li ◽  
Haili Song ◽  
Zongbei Dai ◽  
Zhenbo Zhao ◽  
Chengyan Liu ◽  
...  

Lead-free and eco-friendly GeTe shows promising mid-temperature thermoelectric applications. However, a low Seebeck coefficient due to its intrinsically high hole concentration induced by Ge vacancies, and a relatively high thermal conductivity result in inferior thermoelectric performance in pristine GeTe. Extrinsic dopants such as Sb, Bi, and Y could play a crucial role in regulating the hole concentration of GeTe because of their different valence states as cations and high solubility in GeTe. Here we investigate the thermoelectric performance of GeTe upon Sb doping, and demonstrate a high maximum zT value up to 1.88 in Ge0.90Sb0.10Te as a result of the significant suppression in thermal conductivity while maintaining a high power factor. The maintained high power factor is due to the markable enhancement in the Seebeck coefficient, which could be attributed to the significant suppression of hole concentration and the valence band convergence upon Sb doping, while the low thermal conductivity stems from the suppression of electronic thermal conductivity due to the increase in electrical resistivity and the lowering of lattice thermal conductivity through strengthening the phonon scattering by lattice distortion, dislocations, and twin boundaries. The excellent thermoelectric performance of Ge0.90Sb0.10Te shows good reproducibility and thermal stability. This work confirms that Ge0.90Sb0.10Te is a superior thermoelectric material for practical application.


Sign in / Sign up

Export Citation Format

Share Document