A super compact self-powered device based on paper-like supercapacitors

2019 ◽  
Vol 7 (8) ◽  
pp. 3642-3647 ◽  
Author(s):  
Zhiling Luo ◽  
Changhong Liu ◽  
Shoushan Fan

A novel self-powered device was fabricated by adding one small piece of metal foil onto a supercapacitor. The device can be self-charged to more than 0.7 V when touched by a wet swab. This slender device demonstrates impressive output performance and can drive a vibrating motor. This study provides a novel energy source for self-powered wearable electronics.

Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 778 ◽  
Author(s):  
Huamin Chen ◽  
Yun Xu ◽  
Jiushuang Zhang ◽  
Weitong Wu ◽  
Guofeng Song

Flexible optoelectronics based on inorganic functional components have attracted worldwide attention due to their inherent advantages. However, the power supply problem presents a significant obstacle to the commercialization of wearable optoelectronics. Triboelectric nanogenerator (TENG) technology has the potential to realize self-powered applications compared to the conventional charging technologies. Herein, a flexible self-powered blood oxygen monitoring system based on TENG was first demonstrated. The flexibility of the TENG is mainly due to the inherent properties of polydimethylsiloxane (PDMS) and the continuously undulating surface of crumpled gold (Au) and the rough surface on the electrode and PDMS effectively increased the output performance. The output voltage, output current density, and power density were 75.3 V, 7.4 μA, and 0.2 mW/cm2, respectively. By etching the sacrificial layer, we then derived a flexible blood oxygen and pulse detector without any obvious performance degradation. Powered by the TENG, the detector is mounted onto the thumbnail, from where it detects a stable photoplethysmography (PPG) signal which can be used to calculate the oxyhemoglobin saturation and pulse rate. This self-powered system provides a new way to sustainably monitor physiological parameters, which paves the way for development of wearable electronics and battery-free systems.


2021 ◽  
Vol 7 (3) ◽  
pp. eabd6978 ◽  
Author(s):  
Jingxin Zhao ◽  
Hongyu Lu ◽  
Yan Zhang ◽  
Shixiong Yu ◽  
Oleksandr I. Malyi ◽  
...  

Coaxial fiber-shaped supercapacitors with short charge carrier diffusion paths are highly desirable as high-performance energy storage devices for wearable electronics. However, the traditional approaches based on the multistep fabrication processes for constructing the fiber-shaped energy device still encounter persistent restrictions in fabrication procedure, scalability, and mechanical durability. To overcome this critical challenge, an all-in-one coaxial fiber-shaped asymmetric supercapacitor (FASC) device is realized by a direct coherent multi-ink writing three-dimensional printing technology via designing the internal structure of the coaxial needles and regulating the rheological property and the feed rates of the multi-ink. Benefitting from the compact coaxial structure, the FASC device delivers a superior areal energy/power density at a high mass loading, and outstanding mechanical stability. As a conceptual exhibition for system integration, the FASC device is integrated with mechanical units and pressure sensor to realize high-performance self-powered mechanical devices and monitoring systems, respectively.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 158
Author(s):  
Peng Huang ◽  
Dan-Liang Wen ◽  
Yu Qiu ◽  
Ming-Hong Yang ◽  
Cheng Tu ◽  
...  

In recent years, wearable electronic devices have made considerable progress thanks to the rapid development of the Internet of Things. However, even though some of them have preliminarily achieved miniaturization and wearability, the drawbacks of frequent charging and physical rigidity of conventional lithium batteries, which are currently the most commonly used power source of wearable electronic devices, have become technical bottlenecks that need to be broken through urgently. In order to address the above challenges, the technology based on triboelectric effect, i.e., triboelectric nanogenerator (TENG), is proposed to harvest energy from ambient environment and considered as one of the most promising methods to integrate with functional electronic devices to form wearable self-powered microsystems. Benefited from excellent flexibility, high output performance, no materials limitation, and a quantitative relationship between environmental stimulation inputs and corresponding electrical outputs, TENGs present great advantages in wearable energy harvesting, active sensing, and driving actuators. Furthermore, combined with the superiorities of TENGs and fabrics, textile-based TENGs (T-TENGs) possess remarkable breathability and better non-planar surface adaptability, which are more conducive to the integrated wearable electronic devices and attract considerable attention. Herein, for the purpose of advancing the development of wearable electronic devices, this article reviews the recent development in materials for the construction of T-TENGs and methods for the enhancement of electrical output performance. More importantly, this article mainly focuses on the recent representative work, in which T-TENGs-based active sensors, T-TENGs-based self-driven actuators, and T-TENGs-based self-powered microsystems are studied. In addition, this paper summarizes the critical challenges and future opportunities of T-TENG-based wearable integrated microsystems.


2014 ◽  
Vol 1679 ◽  
Author(s):  
O.G. Súchil ◽  
G. Abadal ◽  
F. Torres

ABSTRACTSelf-powered microsystems as an alternative to standard systems powered by electrochemical batteries are taking a growing interest. In this work, we propose a different method to store the energy harvested from the ambient which is performed in the mechanical domain. Our mechanical storage concept is based on a spring which is loaded by the force associated to the energy source to be harvested [1]. The approach is based on pressing an array of fine wires (fws) grown vertically on a substrate surface. For the fine wires based battery, we have chosen ZnO fine wires due the fact that they could be grown using a simple and cheap process named hydrothermal method [2]. We have reported previous experiments changing temperature and initial pH of the solution in order to determine the best growth [3]. From new experiments done varying the compounds concentration the best results of fine wires were obtained. To characterize these fine wires we have considered that the maximum load we can apply to the system is limited by the linear buckling of the fine wires. From the best results we obtained a critical strain of εc = 3.72 % and a strain energy density of U = 11.26 MJ/m3, for a pinned-fixed configuration [4].


2016 ◽  
Vol 63 (10) ◽  
pp. 1557-1566 ◽  
Author(s):  
Dima Kilani ◽  
Mohammad Alhawari ◽  
Baker Mohammad ◽  
Hani Saleh ◽  
Mohammed Ismail

Author(s):  
Xu Liu ◽  
Xiao-Rong Sun ◽  
Chen Luo ◽  
Hong-zhi Ma ◽  
Hua Yu ◽  
...  

The development of self-powered technology in nano energy puts forward higher requirements for triboelectric nanogenerators (TENGs), in which it is necessary to further improve output performance to broaden the scope...


Author(s):  
Carmel Majidi ◽  
Mikko Haataja ◽  
David J. Srolovitz

The development of self-powered electronic devices is essential for emerging technologies such as wireless sensor networks, wearable electronics, and microrobotics. Of particular interest is the rapidly growing field of piezoelectric energy harvesting (PEH), in which mechanical strains are converted to electricity. Recently, PEH has been demonstrated by brushing an array of piezoelectric nanowires against a nanostructured surface. The piezoelectric nanobrush generator can be limited to sub-micron dimensions and thus allows for a vast reduction in the size of self-powered devices. Moreover, energy harvesting is controlled through contact between the nanowire tips and nanostructured surface, which broadens the design space to a wealth of innovations in tribology. Here we propose design criteria based on principles of contact mechanics, elastic rod theory, and continuum piezoelasticity.


2018 ◽  
Vol 6 (33) ◽  
pp. 16101-16110 ◽  
Author(s):  
Bhaskar Dudem ◽  
L. Krishna Bharat ◽  
Harishkumarreddy Patnam ◽  
Anki Reddy Mule ◽  
Jae Su Yu

A composite film consisting of Al-doped BaTiO3 particles with high ferroelectricity is used to enhance the output performance of nanogenerators.


2020 ◽  
Vol 1 ◽  
Author(s):  
Puchuan Tan ◽  
Yang Zou ◽  
Yubo Fan ◽  
Zhou Li

Abstract Wearable electronics are an essential direction for the future development of smart wearables. Among them, the battery life of wearable electronics is a key technology that limits their development. The proposal of self-powered wearable electronics (SWE) provides a promising solution to the problem of long-term stable working of wearable electronics. This review has made a comprehensive summary and analysis of recent advances on SWE from the perspectives of energy, materials, and ergonomics methods. At the same time, some representative research work was introduced in detail. SWE can be divided into energy type SWE and sensor type SWE according to their working types. Both types of SWE are broadly applied in human–machine interaction, motion information monitoring, diagnostics, and therapy systems. Finally, this article summarizes the existing bottlenecks of SWE, and predicts the future development direction of SWE.


Sign in / Sign up

Export Citation Format

Share Document