Crystalline nanoscale assembly of gold clusters for reversible storage and sensing of CO2via modulation of photoluminescence intermittency

2018 ◽  
Vol 6 (30) ◽  
pp. 8205-8211 ◽  
Author(s):  
Srestha Basu ◽  
Satyapriya Bhandari ◽  
Uday Narayan Pan ◽  
Anumita Paul ◽  
Arun Chattopadhyay

We report that zinc mediated crystalline nanoscale assemblies of atomic gold nanoclusters (NCs) were able to reversibly store gaseous carbon dioxide with adsorption capacity of 1.79 mM g−1 at 20 °C and 20 bar.

2018 ◽  
Author(s):  
Jaya Prakash Madda ◽  
Pilli Govindaiah ◽  
Sushant Kumar Jena ◽  
Sabbhavat Krishna ◽  
Rupak Kishor

<p>Covalent organic Imine polymers with intrinsic meso-porosity were synthesized by condensation reaction between 4,4-diamino diphenyl methane and (para/meta/ortho)-phthaladehyde. Even though these polymers were synthesized from precursors of bis-bis covalent link mode, the bulk materials were micrometer size particles with intrinsic mesoporous enables nitrogen as well as carbon dioxide adsorption in the void spaces. These polymers were showed stability up to 260<sup>o</sup> centigrade. Nitrogen gas adsorption capacity up to 250 cc/g in the ambient pressure was observed with type III adsorption characteristic nature. Carbon dioxide adsorption experiments reveal the possible terminal amine functional group to carbamate with CO<sub>2</sub> gas molecule to the polymers. One of the imine polymers, COP-3 showed more carbon dioxide sorption capacity and isosteric heat of adsorption (Q<sub>st</sub>) than COP-1 and COP-2 at 273 K even though COP-3 had lower porosity for nitrogen gas than COP-1 and COP-2. We explained the trends in gas adsorption capacities and Qst values as a consequence of the intra molecular interactions confirmed by Density Functional Theory computational experiments on small molecular fragments.</p>


1972 ◽  
Vol 50 (12) ◽  
pp. 1355-1362 ◽  
Author(s):  
L. Mannik ◽  
J. C. Stryland

The ν1 band of gaseous carbon dioxide has been studied in pressure-induced absorption at temperatures of ~ 190, ~ 300, and ~ 470 K, over a density range from 0.5 to 300 amagat, and with path lengths from 0.007 to 56 m. The observed temperature variation of the binary absorption coefficient can be satisfactorily accounted for only by adding a quadrupole–quadrupole interaction term to the usual Lennard–Jones model for the inter-molecular potential. The band profile is in agreement with the theory of quadrupole-induced absorption. There is some increase in the intensity of the band near the critical point due to the divergence of the correlation length. A very marked increase in the intensity is possibly prevented by the "cancellation effect".


2001 ◽  
Author(s):  
Y. H. Zheng ◽  
R. S. Amano

Abstract An efficient enhancement of the carbonation rate in the bottle filling stage can substantially increase the production in beverage industries. The bottle filling system currently used in most of the manufacturers can still be improved for a better performance of carbonation by designing the injection tube system. This paper reports on an experimental and numerical mass transfer modeling that can simulate the dissolution process of gaseous carbon dioxide into aqueous water in the bottle filler system. In order to establish the operating characteristics of the bottle filler system, an ordinary tap water and pure carbon dioxide were used as the liquid-gas system. The two-phase numerical modeling was developed that can serve as a framework for the continuous improvement of the design of the carbonation process in the bottle filler system. For an optimal design of CO2 injection tube and flow conditions, a computational fluid dynamics (CFD) approach is one of the most power tools. However, since only limited experimental data are available in the open literature to verify the computational results, an experiment study was performed to obtain measurements of CO2 level, temperature, and pressure during the carbonation process in the bottle filled with liquid. Both experimental and numerical studies of various flow condition and different sizes of injection tube are presented in this paper.


2004 ◽  
Vol 91 (2) ◽  
pp. 209-213 ◽  
Author(s):  
S. Furukawa ◽  
T. Watanabe ◽  
T. Tai ◽  
J. Hirata ◽  
N. Narisawa ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (5) ◽  
pp. 3581-3589 ◽  
Author(s):  
Surya Singh ◽  
Bedika Phukan ◽  
Chandan Mukherjee ◽  
Anil Verma

CO2, being a linear and centrosymmetric molecule, is very stable, and the electrochemical reduction of CO2 requires energy. However, the salen complexes are found to be very efficient to minimize overpotential as compared to their metal counterparts.


Sign in / Sign up

Export Citation Format

Share Document