scholarly journals Polymer-based multiferroic nanocomposites via directed block copolymer self-assembly

2019 ◽  
Vol 7 (4) ◽  
pp. 968-976 ◽  
Author(s):  
Ivan Terzić ◽  
Niels L. Meereboer ◽  
Harm Hendrik Mellema ◽  
Katja Loos

Directed dispersion of magnetic nanoparticles inside self-assembled ferroelectric block copolymers holds promises for future improved multiferroics.

2017 ◽  
Vol 2 (5) ◽  
pp. 589-596 ◽  
Author(s):  
Yoon Hyung Hur ◽  
Seung Won Song ◽  
Jimmy Mays ◽  
YongJoo Kim ◽  
Beom-Goo Kang ◽  
...  

Self-assembly behavior of poly(styrene-b-4-(tert-butyldimethylsiloxy)styrene) (PS-b-P4BDSS) block copolymer and the effect of polydispersity on self-assembled pattern quality.


2021 ◽  
Author(s):  
Vignesh Suresh ◽  
Ah Bian Chew ◽  
Christina Yuan Ling Tan ◽  
Hui Ru Tan

Abstract Block copolymer (BCP) self-assembly processes are often seen as reliable techniques for advanced nanopatterning to achieve functional surfaces and create templates for nanofabrication. By taking advantage of the tunability in pitch, diameter and feature-to-feature separation of the self-assembled BCP features, complex, laterally organized- and stacked- multicomponent nanoarrays comprising of gold and polymer have been fabricated. The approaches not only demonstrate nanopatterning of up to two levels of hierarchy but also investigate how a variation in the feature-to-feature gap at the first hierarchy affects the self-assembly of polymer features at the second. Such BCP self-assembly enabled multicomponent nanoarray configurations are rarely achieved by other nanofabrication approaches and are particularly promising for pushing the boundaries of block copolymer lithography and in creating unique surface architectures and complex morphologies at the nanoscale.


2019 ◽  
Vol 10 (46) ◽  
pp. 6269-6277
Author(s):  
Jong Dae Jang ◽  
Sang-Woo Jeon ◽  
Young-Jin Yoon ◽  
Joona Bang ◽  
Young Soo Han ◽  
...  

We report various self-assembled structures of gold nanoparticles in a block copolymer aggregate template, which are easily driven by hydrophobic interactions.


2020 ◽  
Vol 1000 ◽  
pp. 324-330
Author(s):  
Sri Agustina ◽  
Masayoshi Tokuda ◽  
Hideto Minami ◽  
Cyrille Boyer ◽  
Per B. Zetterlund

The self-assembly of block copolymers has attracted attention for many decades because it can yield polymeric nanoobjects with a wide range of morphologies. Membrane emulsification is a fairly novel technique for preparation of various types of emulsions, which relies on the dispersed phase passing through a membrane in order to effect droplet formation. In this study, we have prepared polymeric nanoparticles of different morphologies using self-assembly of asymmetric block copolymers in connection with membrane emulsification. Shirasu Porous Glass (SPG) membranes has been employed as the membrane emulsification equipment, and poly (oligoethylene glycol acrylate)-block-poly (styrene) (POEGA-b-PSt) copolymers prepared via RAFT polymerization. It has been found that a number of different morphologies can be achieved using this novel technique, including spheres, rods, and vesicles. Interestingly, the results have shown that the morphology can be controlled not only by adjusting experimental parameters specific to the membrane emulsification step such as membrane pore size and pressure, but also by changing the nature of organic solvent. As such, this method provides a novel route to these interesting nanoobjects, with interesting prospects in terms of exercising morphology control without altering the nature of the block copolymer itself.


2015 ◽  
Vol 6 (10) ◽  
pp. 1817-1829 ◽  
Author(s):  
Lichao Liu ◽  
Leilei Rui ◽  
Yun Gao ◽  
Weian Zhang

The synthesis and self-assembly of ferrocene-containing block copolymers PEG-b-PMAEFc, and the encapsulation and redox-responsive release of a model molecule (rhodamine B) upon external redox stimuli (H2O2).


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2572
Author(s):  
Jaleesa Bresseleers ◽  
Mahsa Bagheri ◽  
Coralie Lebleu ◽  
Sébastien Lecommandoux ◽  
Olivier Sandre ◽  
...  

The careful design of nanoparticles, in terms of size and morphology, is of great importance to developing effective drug delivery systems. The ability to precisely tailor nanoparticles in size and morphology during polymer self-assembly was therefore investigated. Four poly(ethylene glycol)-b-poly(N-2-benzoyloxypropyl methacrylamide) mPEG-b-p(HPMA-Bz) block copolymers with a fixed hydrophilic block of mPEG 5 kDa and a varying molecular weight of the hydrophobic p(HPMA-Bz) block (A: 17.1, B: 10.0, C: 5.2 and D: 2.7 kDa) were self-assembled into nanoparticles by nanoprecipitation under well-defined flow conditions, using microfluidics, at different concentrations. The nanoparticles from polymer A, increased in size from 55 to 90 nm using lower polymer concentrations and slower flow rates and even polymer vesicles were formed along with micelles. Similarly, nanoparticles from polymer D increased in size from 35 to 70 nm at slower flow rates and also formed vesicles along with micelles, regardless of the used concentration. Differently, polymers B and C mainly self-assembled into micelles at the different applied flow rates with negligible size difference. In conclusion, this study demonstrates that the self-assembly of mPEG-b-p(HPMA-Bz) block copolymers can be easily tailored in size and morphology using microfluidics and is therefore an attractive option for further scaled-up production activities.


RSC Advances ◽  
2014 ◽  
Vol 4 (32) ◽  
pp. 16721-16725 ◽  
Author(s):  
Gianpaolo Chieffi ◽  
Rocco Di Girolamo ◽  
Antonio Aronne ◽  
Pasquale Pernice ◽  
Esther Fanelli ◽  
...  

A fast method for the preparation of block-copolymer-based hybrid composite nanostructures and titania substrates well oriented over a large area, is illustrated.


2016 ◽  
Vol 7 (30) ◽  
pp. 4901-4911 ◽  
Author(s):  
Hua Yuan ◽  
Hai Chi ◽  
Weizhong Yuan

The micelles/aggregates that were self-assembled from a star-shaped copolymer presented redox-responsive behaviour and LCST–UCST thermoresponsive transition.


Polymer ◽  
2008 ◽  
Vol 49 (25) ◽  
pp. 5596-5601 ◽  
Author(s):  
Yingdong Xia ◽  
Zhaoyan Sun ◽  
Tongfei Shi ◽  
Jizhong Chen ◽  
Lijia An ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document