A dual-enzyme, micro-band array biosensor based on the electrodeposition of carbon nanotubes embedded in chitosan and nanostructured Au-foams on microfabricated gold band electrodes

The Analyst ◽  
2020 ◽  
Vol 145 (2) ◽  
pp. 402-414 ◽  
Author(s):  
Vuslat B. Juska ◽  
Martyn E. Pemble

We report the development of a dual-enzyme electrochemical biosensor based on microfabricated gold band array electrodes which were first modified by gold foam (Au-foam) in order to dramatically increase the active surface area.

2016 ◽  
Vol 36 (4) ◽  
Author(s):  
Amin Termeh Yousefi ◽  
Minoru Fukumori ◽  
Pandey Reetu Raj ◽  
Polin Liu ◽  
Lingxiang Fu ◽  
...  

AbstractCarbon nanotubes (CNTs) are considered as one of the most intensively explored nanostructured materials and have been widely used as a platform material for metal and semiconductor nanoparticles (NPs) due to their large and chemically active surface area. Several approaches have been described in the literature to immobilize NPs on the surface of CNTs. This report reviews the recent developments in this area by exploring the various techniques where nanotubes can be functionalized with NPs to improve the optical, mechanical, thermal, medical, electrical, and magnetic applications of CNTs.


2010 ◽  
Vol 75 (10) ◽  
pp. 1435-1439 ◽  
Author(s):  
Maja Obradovic

The results of an investigation of two samples of commercial multi-walled carbon nanotubes and a sample of carbon black, in the raw and activated state, were presented in the lecture. The activation of the carbon materials led to the formation of an abundance of oxygencontaining functional groups on the surface, an increased electrochemically active surface area, an enhanced charge storage ability and a promotion of the electron-transfer kinetics. It was presented that the morphology of the carbon nanotubes is important for the electrochemical properties, because nanotubes with a higher proportion of edge and defect sites showed faster electron transfer and pseudocapacitive redox kinetics. Modification of oxidized nanotubes by ethylenediamine and wrapping by poly(diallyldimethylammonium) chloride led to a decrease in the electrochemically active surface area and to reduced electron-transfer kinetics. Pt nanoparticles prepared by the microwave-assisted polyol method were deposited at the investigated carbon materials. A much higher efficiency of Pt deposition was observed on the modified CNTs than on the activated CNTs. The activity of the synthesized catalyst toward electrochemical oxygen reduction was almost the same as the activity of the commercial Pt/XC-72 catalyst.


Author(s):  
Kailun Yang ◽  
Recep Kas ◽  
Wilson A. Smith

<p>This study evaluated the performance of the commonly used strong buffer electrolytes, i.e. phosphate buffers, during CO<sub>2</sub> electroreduction in neutral pH conditions by using in-situ surface enhanced infrared absorption spectroscopy (SEIRAS). Unfortunately, the buffers break down a lot faster than anticipated which has serious implications on many studies in the literature such as selectivity and kinetic analysis of the electrocatalysts. Increasing electrolyte concentration, surprisingly, did not extend the potential window of the phosphate buffers due to dramatic increase in hydrogen evolution reaction. Even high concentration phosphate buffers (1 M) break down within the potentials (-1 V vs RHE) where hydrocarbons are formed on copper electrodes. We have extended the discussion to high surface area electrodes by evaluating electrodes composed of copper nanowires. We would like highlight that it is not possible to cope with high local current densities on these high surface area electrodes by using high buffer capacity solutions and the CO<sub>2</sub> electrocatalysts are needed to be evaluated by casting thin nanoparticle films onto inert substrates as commonly employed in fuel cell reactions and up to now scarcely employed in CO<sub>2</sub> electroreduction. In addition, we underscore that normalization of the electrocatalytic activity to the electrochemical active surface area is not the ultimate solution due to concentration gradient along the catalyst layer.This will “underestimate” the activity of high surface electrocatalyst and the degree of underestimation will depend on the thickness, porosity and morphology of the catalyst layer. </p> <p> </p>


2012 ◽  
Vol 12 (6) ◽  
pp. 4919-4927 ◽  
Author(s):  
Nithi Atthi ◽  
Jakrapong Supadech ◽  
Gaetan Dupuy ◽  
On-uma Nimittrakoolchai ◽  
Apirak Pankiew ◽  
...  

2018 ◽  
Vol 8 (10) ◽  
pp. 2672-2685 ◽  
Author(s):  
Rhiyaad Mohamed ◽  
Tobias Binninger ◽  
Patricia J. Kooyman ◽  
Armin Hoell ◽  
Emiliana Fabbri ◽  
...  

Synthesis of Sb–SnO2 supported Pt nanoparticles with an outstanding ECSA for the oxygen reduction reaction.


2019 ◽  
Vol 7 (2) ◽  
pp. 764-774 ◽  
Author(s):  
Xuncai Chen ◽  
Zixun Yu ◽  
Li Wei ◽  
Zheng Zhou ◽  
Shengli Zhai ◽  
...  

Carbon nanotubes increase electrochemically active surface area and reduce charge transfer resistance of transition metal borides.


Sign in / Sign up

Export Citation Format

Share Document