pH/redox dual-responsive amphiphilic zwitterionic polymers with a precisely controlled structure as anti-cancer drug carriers

2019 ◽  
Vol 7 (8) ◽  
pp. 3190-3203 ◽  
Author(s):  
Zhengzhong Wu ◽  
Ziying Gan ◽  
Bin Chen ◽  
Fan Chen ◽  
Jun Cao ◽  
...  

Stimuli responsive functional polymer isomers performed variously serving as drug carriers for cancer therapy.

2016 ◽  
Vol 40 (1) ◽  
pp. 545-557 ◽  
Author(s):  
Dipsikha Bhattacharya ◽  
Birendra Behera ◽  
Sumanta Kumar Sahu ◽  
Rajakumar Ananthakrishnan ◽  
Tapas Kumar Maiti ◽  
...  

Stimuli triggered release of DOX from dual responsive theranostic nanocarriers mimicking lysosomal conditions i.e. physiological temperature (37 °C) and acidic pH (5.5).


2018 ◽  
Vol 18 (2) ◽  
pp. 302-311
Author(s):  
Shulin Dai ◽  
Yucheng Feng ◽  
Shuyi Li ◽  
Yuxiao Chen ◽  
Meiqing Liu ◽  
...  

Background: Micelles as drug carriers are characterized by their inherent instability due to the weak physical interactions that facilitate the self-assembly of amphiphilic block copolymers. As one of the strong physical interactions, the stereocomplexation between the equal molar of enantiomeric polylactides, i.e., the poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA), may be harnessed to obtain micelles with enhanced stability and drug loading capacity and consequent sustained release. </P><P> Aims/Methods: In this paper, stereocomplexed micelles gama-PGA-g-PLA micelles) were fabricated from the stereocomplexation between poly(gama-glutamic acid)-graft-PLLA gama-PGA-g-PLA) and poly(gamaglutamic acid)-graft-PDLA gama-PGA-g-PLA). These stereocomplexed micelles exhibited a lower CMC than the corresponding enantiomeric micelles. Result: Furthermore, they showed higher drug loading content and drug loading efficiency in addition to more sustained drug release profile in vitro. In vivo imaging confirmed that the DiR-encapsulated stereocomplexed gama-PGA-g-PLA micelles can deliver anti-cancer drug to tumors with enhanced tissue penetration. Overall, gama-PGA-g-PLA micelles exhibited greater anti-cancer effects as compared with the free drug and the stereocomplexation may be a promising strategy for fabrication of anti-cancer drug carriers with significantly enhanced efficacy.


RSC Advances ◽  
2021 ◽  
Vol 11 (31) ◽  
pp. 18984-18993
Author(s):  
Divya Sivanesan ◽  
Rama S. Verma ◽  
Edamana Prasad

Diagrammatic flowchart for the synthesis of polymeric PGS and preparation of 5FU-loaded PGS nanoparticles.


RSC Advances ◽  
2015 ◽  
Vol 5 (49) ◽  
pp. 38810-38817 ◽  
Author(s):  
Yeping Li ◽  
Jingbo Xu ◽  
Yun Xu ◽  
Liying Huang ◽  
Junli Wang ◽  
...  

The objective of the study is to describe a new approach of combining quantum dots into chitosan as an anti-cancer drug carrier.


Nano Today ◽  
2021 ◽  
Vol 38 ◽  
pp. 101119
Author(s):  
Masoud Delfi ◽  
Rossella Sartorius ◽  
Milad Ashrafizadeh ◽  
Esmaeel Sharifi ◽  
Yapei Zhang ◽  
...  

Pharmaceutics ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 136 ◽  
Author(s):  
Ali Alsuraifi ◽  
Anthony Curtis ◽  
Dimitrios Lamprou ◽  
Clare Hoskins

Nanoscale polymers systems have dominated the revolution of drug delivery advancement. Their potential in the fight against cancer is unrivalled with other technologies. Their functionality increase, targeting ability and stimuli responsive nature have led to a major boom in research focus. This review article concentrates on the use of these smart polymers in cancer therapy. Nanotechnologies have shown potential as drug carriers leading to increased drug efficacy and penetration. Multifunctional smart carriers which can release their payload upon an external or internal trigger such as pH or temperature are proving to be major frontrunners in the development of effective strategies to overcome this disease with minimal patient side effects.


2019 ◽  
Vol 120 ◽  
pp. 109271 ◽  
Author(s):  
Bartłomiej Kost ◽  
Marek Brzeziński ◽  
Marcin Cieślak ◽  
Karolina Królewska-Golińska ◽  
Tomasz Makowski ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 180 ◽  
Author(s):  
Jin Ah Kim ◽  
Dong Youl Yoon ◽  
Jin-Chul Kim

Since cancer cells are oxidative in nature, anti-cancer agents can be delivered to cancer cells specifically without causing severe normal cell toxicity if the drug carriers are designed to be sensitive to the intrinsic characteristic. Oxidation-sensitive liposomes were developed by stabilizing dioleoylphosphatidyl ethanolamine (DOPE) bilayers with folate-conjugated poly(hydroxyethyl acrylate-co-allyl methyl sulfide) (F-P(HEA-AMS)). The copolymer, synthesized by a free radical polymerization, was surface-active but lost its surface activity after AMS unit was oxidized by H2O2 treatment. The liposomes with F-P(HEA-AMS) were sensitive to H2O2 concentration (0%, 0.5%, 1.0%, and 2.0%) in terms of release, possibly because the copolymer lost its surface activity and its bilayer-stabilizing ability upon oxidation. Fluorescence-activated cell sorting (FACS) and confocal laser scanning microscopy (CLSM) revealed that doxorubicin (DOX)-loaded liposomes stabilized with folate-conjugated copolymers markedly promoted the transport of the anti-cancer drug to cancer cells. This was possible because the liposomes were readily translocated into the cancer cells via receptor-mediated endocytosis. This liposome would be applicable to the delivery carrier of anticancer drugs.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1523 ◽  
Author(s):  
Yuanyuan Fu ◽  
Qianqian Gu ◽  
Li Luo ◽  
Jiecheng Xu ◽  
Yuping Luo ◽  
...  

Autophagy inhibition has been proposed to be a potential therapeutic strategy for cancer, however, few autophagy inhibitors have been developed. Recent studies have indicated that lysosome and autophagy related 4B cysteine peptidase (ATG4B) are two promising targets in autophagy for cancer therapy. Although some inhibitors of either lysosome or ATG4B were reported, there are limitations in the use of these single target compounds. Considering multi-functional drugs have advantages, such as high efficacy and low toxicity, we first screened and validated a batch of compounds designed and synthesized in our laboratory by combining the screening method of ATG4B inhibitors and the identification method of lysosome inhibitors. ATG4B activity was effectively inhibited in vitro. Moreover, 163N inhibited autophagic flux and caused the accumulation of autolysosomes. Further studies demonstrated that 163N could not affect the autophagosome-lysosome fusion but could cause lysosome dysfunction. In addition, 163N diminished tumor cell viability and impaired the development of colorectal cancer in vivo. The current study findings indicate that the dual effect inhibitor 163N offers an attractive new anti-cancer drug and compounds having a combination of lysosome inhibition and ATG4B inhibition are a promising therapeutic strategy for colorectal cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document