scholarly journals Stimuli Responsive Polymeric Systems for Cancer Therapy

Pharmaceutics ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 136 ◽  
Author(s):  
Ali Alsuraifi ◽  
Anthony Curtis ◽  
Dimitrios Lamprou ◽  
Clare Hoskins

Nanoscale polymers systems have dominated the revolution of drug delivery advancement. Their potential in the fight against cancer is unrivalled with other technologies. Their functionality increase, targeting ability and stimuli responsive nature have led to a major boom in research focus. This review article concentrates on the use of these smart polymers in cancer therapy. Nanotechnologies have shown potential as drug carriers leading to increased drug efficacy and penetration. Multifunctional smart carriers which can release their payload upon an external or internal trigger such as pH or temperature are proving to be major frontrunners in the development of effective strategies to overcome this disease with minimal patient side effects.

2012 ◽  
Vol 15 (4) ◽  
pp. 592 ◽  
Author(s):  
Hugo Almeida ◽  
Maria Helena Amaral ◽  
Paulo Lobão ◽  
José Manuel Sousa Lobo

Topical drug treatment aims at providing high concentrations of drugs at the site of application so as to avoid adverse systemic effects associated with oral administration. Smart polymers, or stimuli-responsive polymers, are able to respond to a stimulus by showing physical or chemical changes in their behaviour as, for example, the delivery of the drug carried by them. The thermo-responsive nature of Pluronic® F-127 (Basf, Ludwigshafen, Germany) makes it an excellent candidate for the delivery of drugs at various application sites. In recent years, PF-127, and later, Pluronic lecithin organogels (PLO), have attracted particular interest in the design of dermal and transdermal delivery systems with a view to promoting, improving or retarding drug permeation through the skin, bearing in mind that for topical delivery systems, accumulation in the skin with minimal permeation is desired, while for systemic delivery, the opposite behaviour is preferred. In this review, we discuss the properties and characteristics of PF-127 and Pluronic lecithin organogels (PLO), and present many examples and advantages of the application of these polymeric systems in topical and transdermal administration of drugs. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


2018 ◽  
Vol 10 (3) ◽  
pp. 309-319 ◽  
Author(s):  
Zhijiang Xi ◽  
Bing Zheng

Aptamer is a new-type of specific recognition molecule and is emerging as a promising therapeutic agent. The greatest advantage of aptamers is their high binding affinity and specificity towards the target. The toxicity of anticancer drugs to surrounding healthy tissues limits their clinical applications. However, nanomaterials for drug carriers can considerably improve drug efficacy while reducing toxicity, because they accumulate and release drugs at the lesion without affecting healthy tissues. As drug carriers, aptamer-conjugated nanomaterials can enhance active targeting and then release the drug into the targeted cancer cells effectively. Therefore, aptamer-conjugated nanomaterials for targeted cancer therapy constitute an evolving treatment approach with considerable potential to enhance the efficacy of cancer therapy via the delivery of therapeutic agents specific to and into the targeted tumor cells. In this paper, various aptamer-conjugated nanomaterials such as gold nanoparticles, magnetic nanoparticles, silica nanoparticles, carbon nanotubes, poly D,L-lactic-co-glycolic acid, and quantum dots for targeted cancer therapy, are reviewed and their prospect as therapeutic agents is evaluated.


2019 ◽  
Vol 7 (8) ◽  
pp. 3190-3203 ◽  
Author(s):  
Zhengzhong Wu ◽  
Ziying Gan ◽  
Bin Chen ◽  
Fan Chen ◽  
Jun Cao ◽  
...  

Stimuli responsive functional polymer isomers performed variously serving as drug carriers for cancer therapy.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 370
Author(s):  
Feng Chen ◽  
Yang Li ◽  
Xiongjie Lin ◽  
Huayu Qiu ◽  
Shouchun Yin

Cancer has become a common disease that seriously endangers human health and life. Up to now, the essential treatment method has been drug therapy, and drug delivery plays an important role in cancer therapy. To improve the efficiency of drug therapy, researchers are committed to improving drug delivery methods to enhance drug pharmacokinetics and cancer accumulation. Supramolecular coordination complexes (SCCs) with well-defined shapes and sizes are formed through the coordination between diverse functional organic ligands and metal ions, and they have emerged as potential components in drug delivery and cancer therapy. In particular, micelles or vesicles with the required biocompatibility and stability are synthesized using SCC-containing polymeric systems to develop novel carriers for drug delivery that possess combined properties and extended system tunability. In this study, the research status of SCC-containing polymeric systems as drug carriers and adjuvants for cancer treatment is reviewed, and a special focus is given to their design and preparation.


2019 ◽  
Vol 168 ◽  
pp. 108956 ◽  
Author(s):  
Jianbing Li ◽  
Xiufang Li ◽  
Hui Liu ◽  
Tao Ren ◽  
Ling Huang ◽  
...  

Author(s):  
Gore S. A. ◽  
Gholve S. B. ◽  
Savalsure S. M. ◽  
Ghodake K. B. ◽  
Bhusnure O. G. ◽  
...  

Smart polymers are materials that respond to small external stimuli. These are also referred as stimuli responsive materials or intelligent materials. Smart polymers that can exhibit stimuli-sensitive properties are becoming important in many commercial applications. These polymers can change shape, strength and pore size based on external factors such as temperature, pH and stress. The stimuli include salt, UV irradiation, temperature, pH, magnetic or electric field, ionic factors etc. Smart polymers are very promising applicants in drug delivery, tissue engineering, cell culture, gene carriers, textile engineering, oil recovery, radioactive wastage and protein purification. The study is focused on the entire features of smart polymers and their most recent and relevant applications. Water soluble polymers with tunable lower critical solution temperature (LCST) are of increasing interest for biological applications such as cell patterning, smart drug release, DNA sequencing etc.


Author(s):  
Menghan Gao ◽  
Hong Deng ◽  
Weiqi Zhang

: Hyaluronan (HA) is a natural linear polysaccharide that has excellent hydrophilicity, biocompatibility, biodegradability, and low immunogenicity, making it one of the most attractive biopolymers used for biomedical researches and applications. Due to the multiple functional sites on HA and its intrinsic affinity for CD44, a receptor highly expressed on various cancer cells, HA has been widely engineered to construct different drug-loading nanoparticles (NPs) for CD44- targeted anti-tumor therapy. When a cocktail of drugs is co-loaded in HA NP, a multifunctional nano-carriers could be obtained, which features as a highly effective and self-targeting strategy to combat the cancers with CD44 overexpression. The HA-based multidrug nano-carriers can be a combination of different drugs, various therapeutic modalities, or the integration of therapy and diagnostics (theranostics). Up to now, there are many types of HA-based multidrug nano-carriers constructed by different formulation strategies including drug co-conjugates, micelles, nano-gels and hybrid NP of HA and so on. This multidrug nano-carrier takes the full advantages of HA as NP matrix, drug carriers and targeting ligand, representing a simplified and biocompatible platform to realize the targeted and synergistic combination therapy against the cancers. In this review, recent progresses about HA-based multidrug nano-carriers for combination cancer therapy are summarized and its potential challenges for translational applications have been discussed.


Author(s):  
Feng Wu ◽  
Fei Qiu ◽  
Siew Anthony Wai-Keong ◽  
Yong Diao

Background: In recent years, the emergence of stimuli-responsive nanoparticles makes drug delivery more efficient. As an intelligent and effective targeted delivery platform, it can reduce the side effects generated during drug transportation while enhancing the treatment efficacy. The stimuli-responsive nanoparticles can respond to different stimuli at corresponding times and locations to deliver and release their drugs and associated therapeutic effects. Objective: This review aims to inform researchers on the latest advances in the application of dual-stimuli responsive nanoparticles in precise drug delivery, with special attention to their design, drug release properties, and therapeutic effects. Syntheses of nanoparticles with simultaneous or sequential responses to two or more stimuli (pH-redox, pH-light, redoxlight, temperature-magnetic, pH-redox-temperature, redox-enzyme-light, etc.) and the applications of such responsivity properties for drugs control and release have become a hot topic of recent research. Methods: A database of relevant information for the production of this review was sourced, screened and analyzed from Pubmed, Web of Science, SciFinder by searching for the following keywords: “dual-stimuli responsive”, “controlled release”, “cancer therapy”, “synergistic treatment”. Results: Notably, the nanoparticles with dual-stimuli responsive function have an excellent control effect on drug delivery and release, playing a crucial part in the treatment of tumors. They can improve the encapsulation and delivery efficiency of hydrophobic chemotherapy drugs, combine chemo-photothermal therapies, apply imaging function in the diagnosis of tumors and even conduct multi-drugs delivery to overcome multi-drugs resistance (MDR). Conclusion: With the development of smart dual-stimuli responsive nanoparticles, cancer treatment methods will become more diverse and effective. All the stimuli-responsive nanoparticles functionalities exhibited their characteristics individually within the single nanosystem.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1108
Author(s):  
Manuela Curcio ◽  
Alessandro Paolì ◽  
Giuseppe Cirillo ◽  
Sebastiano Di Pietro ◽  
Martina Forestiero ◽  
...  

Nanoparticles with active-targeting and stimuli-responsive behavior are a promising class of engineered materials able to recognize the site of cancer disease, targeting the drug release and limiting side effects in the healthy organs. In this work, new dual pH/redox-responsive nanoparticles with affinity for folate receptors were prepared by the combination of two amphiphilic dextran (DEX) derivatives. DEXFA conjugate was obtained by covalent coupling of the polysaccharide with folic acid (FA), whereas DEXssPEGCOOH derived from a reductive amination step of DEX was followed by condensation with polyethylene glycol 600. After self-assembling, nanoparticles with a mean size of 50 nm, able to be destabilized in acidic pH and reducing media, were obtained. Doxorubicin was loaded during the self-assembling process, and the release experiments showed the ability of the proposed system to modulate the drug release in response to different pH and redox conditions. Finally, the viability and uptake experiments on healthy (MCF-10A) and metastatic cancer (MDA-MB-231) cells proved the potential applicability of the proposed system as a new drug vector in cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document