scholarly journals The road to aryl CH⋯anion binding was paved with good intentions: fundamental studies, host design, and historical perspectives in CH hydrogen bonding

2019 ◽  
Vol 55 (36) ◽  
pp. 5195-5206 ◽  
Author(s):  
Lisa M. Eytel ◽  
Hazel A. Fargher ◽  
Michael M. Haley ◽  
Darren W. Johnson

This feature article highlights recent approaches to anion recognition with a focus on aryl CH hydrogen bonds.

2004 ◽  
Vol 82 (3) ◽  
pp. 454-460 ◽  
Author(s):  
Zhen-Ya Zeng ◽  
Yong-Bing He ◽  
Lan-Hua Wei ◽  
Jin-Long Wu ◽  
Yan-Yan Huang ◽  
...  

Two new neutral receptors (1 and 2) containing thiourea and amide groups were synthesized by simple steps in good yields. The binding properties of 1 and 2 with anions were examined by UV–vis, fluorescence, and 1H NMR spectroscopy. Receptor 1 had a better AcO–: H2PO4– selectivity in comparison with that for receptor 2. The association constants of 1·AcO–, 2·AcO–, and 2·H2PO4– were higher in comparison with those of other anions (Cl–, Br–, I–, p-NO2PhO–, and p-NO2PhOPO32–). In particular, a clear color change was observed, from pale yellow to red-brown, upon addition of AcO– to the solution of 1 in DMSO. The UV–vis and fluorescence data indicate that a 1:1 stoichiometry complex is formed between compound 1 or 2 and anions through hydrogen-bonding interactions.Key words: neutral receptors, anion recognition, synthesis, hydrogen bonds.


RSC Advances ◽  
2017 ◽  
Vol 7 (19) ◽  
pp. 11253-11258 ◽  
Author(s):  
Sheila Ruiz-Botella ◽  
Pietro Vidossich ◽  
Gregori Ujaque ◽  
Eduardo Peris ◽  
Paul D. Beer

The preparation and anion binding properties of 1,3,5-tri-substituted benzene platform-based tripodal receptors containing halogen bonding (XB) iodo-imidazolium and iodo-triazolium motifs, and hydrogen bonding (HB) analogues are described.


2021 ◽  
Vol 22 (10) ◽  
pp. 5380
Author(s):  
Boris A. Kolesov

The work outlines general ideas on how the frequency and the intensity of proton vibrations of X–H×××Y hydrogen bonding are formed as the bond evolves from weak to maximally strong bonding. For this purpose, the Raman spectra of different chemical compounds with moderate, strong, and extremely strong hydrogen bonds were obtained in the temperature region of 5 K–300 K. The dependence of the proton vibrational frequency is schematically presented as a function of the rigidity of O-H×××O bonding. The problems of proton dynamics on tautomeric O–H···O bonds are considered. A brief description of the N–H···O and C–H···Y hydrogen bonds is given.


2006 ◽  
Vol 62 (5) ◽  
pp. o2043-o2044 ◽  
Author(s):  
Shao-Wen Chen ◽  
Han-Dong Yin ◽  
Da-Qi Wang ◽  
Xia Kong ◽  
Xiao-Fang Chen

The crystal structure of the title compound, C14H14ClN3O3 +·Cl−·0.5H2O, exhibits O—H...O, C—H...O, C—H...Cl, N—H...Cl and O—H...Cl hydrogen bonds. The chloride anions participate in extensive hydrogen bonding with the aminium cations and link molecules through multiple N—H+...Cl− interactions.


Author(s):  
Wilhelm Maximilian Hützler ◽  
Michael Bolte

In order to study the preferred hydrogen-bonding pattern of 6-amino-2-thiouracil, C4H5N3OS, (I), crystallization experiments yielded five different pseudopolymorphs of (I), namely the dimethylformamide disolvate, C4H5N3OS·2C3H7NO, (Ia), the dimethylacetamide monosolvate, C4H5N3OS·C4H9NO, (Ib), the dimethylacetamide sesquisolvate, C4H5N3OS·1.5C4H9NO, (Ic), and two different 1-methylpyrrolidin-2-one sesquisolvates, C4H5N3OS·1.5C5H9NO, (Id) and (Ie). All structures containR21(6) N—H...O hydrogen-bond motifs. In the latter four structures, additionalR22(8) N—H...O hydrogen-bond motifs are present stabilizing homodimers of (I). No type of hydrogen bond other than N—H...O is observed. According to a search of the Cambridge Structural Database, most 2-thiouracil derivatives form homodimers stabilized by anR22(8) hydrogen-bonding pattern, with (i) only N—H...O, (ii) only N—H...S or (iii) alternating pairs of N—H...O and N—H...S hydrogen bonds.


2012 ◽  
Vol 67 (1) ◽  
pp. 5-10
Author(s):  
Guido J. Reiss ◽  
Martin van Megen

The reaction of bipyridine with hydroiodic acid in the presence of iodine gave two new polyiodide-containing salts best described as 4,4´-bipyridinium bis(triiodide), C10H10N2[I3]2, 1, and bis(4,4´-bipyridinium) diiodide bis(triiodide) tris(diiodine) solvate dihydrate, (C10H10N2)2I2[I3]2 · 3 I2 ·2H2O, 2. Both compounds have been structurally characterized by crystallographic and spectroscopic methods (Raman and IR). Compound 1 is composed of I3 − anions forming one-dimensional polymers connected by interionic halogen bonds. These chains run along [101] with one crystallographically independent triiodide anion aligned and the other triiodide anion perpendicular to the chain direction. There are no classical hydrogen bonds present in 1. The structure of 2 consists of a complex I144− anion, 4,4´-bipyridinium dications and hydrogen-bonded water molecules in the ratio of 1 : 2 : 2. The I144− polyiodide anion is best described as an adduct of two iodide and two triiodide anions and three diiodine molecules. Two 4,4´-bipyridinium cations and two water molecules form a cyclic dimer through N-H· · ·O hydrogen bonds. Only weak hydrogen bonding is found between these cyclic dimers and the polyiodide anions.


2018 ◽  
Vol 74 (9) ◽  
pp. 1295-1298
Author(s):  
Jan Fábry

Two of the constituent molecules in the title structure, 2C6H7N2O+·HPO3 2−·H2O, i.e. the phosphite anion and the water molecule, are situated on a symmetry plane. The molecules are held together by moderate N—H...O and O—H...N, and weak O—H...O and C—H...Ocarbonyl hydrogen bonds in which the amide and secondary amine groups, and the water molecules are involved. The structural features are usual, among them the H atom bonded to the P atom avoids hydrogen bonding.


Sign in / Sign up

Export Citation Format

Share Document