Hydrothermal synthesis of Sm-doped Bi2WO6 flower-like microspheres for photocatalytic degradation of rhodamine B

CrystEngComm ◽  
2019 ◽  
Vol 21 (41) ◽  
pp. 6208-6218 ◽  
Author(s):  
Xianghui Zhang ◽  
Mingming Zhang ◽  
Kaixuan Cao

Sm-doped Bi2WO6 with 3D flower-like microspheres structure shows extremely high photodegradation activity and superior stability and reusability because of the optimum optical absorption activity and the larger specific surface area.

2021 ◽  
Author(s):  
Pengxi Li ◽  
Jiepeng Wang ◽  
Liming Li ◽  
Shili Song ◽  
Xianming Yuan ◽  
...  

ZnMoO4 with oxygen vacancy (ZnMoO4-OV) porous nanosheet was synthesized by hydrothermal synthesis and hydrogenation reduction method. The ZnMoO4-OV porous nan sheet delivers a higher specific surface area together with a...


2007 ◽  
Vol 336-338 ◽  
pp. 2017-2020 ◽  
Author(s):  
Fan Yong Ran ◽  
Wen Bin Cao ◽  
Yan Hong Li ◽  
Xiao Ning Zhang

Nanosize anatase TiO2 powders have been synthesized by hydrothermal synthesis by using technical grade TiOSO4 as precursor and urea as precipitating agent. The initial pressure of the reaction system was set at 6 MPa. Stirring speed was fixed at 300r/min. The reaction system reacted at the temperature ranged from 110 to 150°C for holding 2hrs to 8hrs and the concentration of the precursor was ranged from 0.25M to1.5M. XRD patterns show that the synthesized powders are in the form of anatase phase. Calculated grain size is ranged from 6.7 to 8.9nm by Scherrer method from the line broadening of the (101) diffraction peak of anatase. The specific surface area of the powders synthesized under different conditions is ranged from 124 to 240m2/g. The grain size of the powders increases with the increase of the reaction temperature, holding time and precursor concentration, respectively. The specific surface area decreases with the increase of reaction temperature and holding time, and does not obviously change with the change of precursor concentration when the concentration of the precursor is less than 1M. However, when the concentration is higher than 1M, the specific surface area will decrease quickly with the increase of the precursor concentration. XRD and DSC-TG analysis shows that the synthesized anatase TiO2 will begin to transform to rutile TiO2 at about 840°C. When heated to 1000°C for holding 1h, the anatase powders will transform to rutile completely.


2021 ◽  
Vol 21 (12) ◽  
pp. 5835-5845
Author(s):  
Ranjith Balu ◽  
Arivuoli Dakshanamoorthy

Supercapacitor with high specific capacity is desirable for various energy storage and high powerdensity applications. Though Graphene has been the preferred material for high current density, nanocomposites have been attempted to increase the specific capacitance. Hydrothermal synthesis of cadmium sulfide/graphene (CdS/G) nanocomposite with CdS nanoparticles anchored/decorated over the graphene sheets is reported. The structural studies reveal the hexagonal phase of the prepared materials. The specific surface area (BET) and porosity is found to increase upon nanocomposite formation. The electrochemical characteristics such as cyclic voltammetry (CV), GCD and EIS of the CdS/G nanocomposite have been investigated. The capacitance of CdS/G nanocomposite almost doubled to 248 Fg−1 indicating the enhanced performance of the nanocomposite system and in addition it also showed excellent cycling stability of 74.8 percent after 1000 cycles. The supercapacitor investigated retained the initial energy density after charge-discharge, at 0.5 A/g for 1000 cycles. The graphene nanosheets increased the specific surface area and interfacial electron transfer of the composite material. It enhances the specific capacitance and cyclic stability of the supercapacitor device.


2002 ◽  
Vol 4 (4) ◽  
pp. 147-151 ◽  
Author(s):  
Amina Amine Khodja ◽  
Bernadette Lavedrine ◽  
Claire Richard ◽  
Tahar Sehili

The photocatalytic degradation of metoxuron [3-(3-chloro-4-methoxyphenyl)-1,1-dimethylurea] in aqueous suspensions ofTiO2was investigated. Several intermediate photoproducts were identified using NMR and MS techniques. Oxidation or removal of the methyl of terminal nitrogen and ring hydroxylation were found to occur. 2-Propanol was shown to decrease the rate of photocatalytic degradation, inhibiting partly ring hydroxylation and completely reactions on terminal nitrogen. In contrast, basification of the suspensions accelerated the degradation significantly. Degussa P25TiO2was found to exhibit a higher photocatalytic activity than MillenniumTiO2in spite of a generally smaller specific surface area. Within the MillenniumTiO2series, the photocatalytic efficiency increased with the specific surface area.


2011 ◽  
Vol 183-185 ◽  
pp. 2024-2027
Author(s):  
Li Ming Jiang

Titania powders were prepared under hydrothermal conditions by employing organic molecule β-cyclodextrin(CD) as template, and characterized by means of TGA、XRD、BET . The effects of the pH on the specific surface area and photocatalytic performance of titania were discussed. The results showed that titania powders were anatase structure;the titania powders with specific surface area up to 216.2 m2g-1 were prepared while the system pH was about 1 , and the powders had the best photocatalytic activity.


2016 ◽  
Vol 44 (2) ◽  
pp. 129-133
Author(s):  
Muhammad Abbas Ahmad Zaini ◽  
Mohd Shafiq Mohd Shaid

Abstract This study aimed to investigate the adsorptive ability of activated carbons derived from empty boil palm fruitbunch carbons through metal-chloride activation. The derived activated carbons were characterized in terms of yield, pH, surface functional groups, and specific surface area. Rhodamine B dye was used as a pollutant probe to evaluate the performance of activated carbons. Results show that empty, ZnCl2-activated fruit-bunch carbon exhibits a higher surface area of 866 m2 g-1 and a Rhodamine B removal yield of 105 mg g-1. Activation at the same temperature of 600 °C using the recovered FeCl2 yields an activated carbon with nearly twice the surface area compared to the fresh one. A direct correlation was obtained between the roles of the specific surface area and removal of Rhodamine B. Empty fruit-bunch carbon is a promising adsorbent precursor for colour removal from water.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Tan Lam Nguyen ◽  
Viet Dinh Quoc ◽  
Thi Lan Nguyen ◽  
Thi Thanh Thuy Le ◽  
Thanh Khan Dinh ◽  
...  

A low-cost and simplistic approach for the synthesis of nanosized SO42-/TiO2 photocatalyst was successfully performed using Binh Dinh ilmenite ore and H2SO4 as titanium and sulfur sources, respectively. The experimental results indicate that the obtained material exists in the form of particles with a size of about 22 nm and has a specific surface area of about 49 m2 g-1. Compared with the TiO2 sample, the SO42-/TiO2 sample shows much higher photocatalytic degradation of rhodamine B (RhB) under the sunlight irradiation. In more details, the nanosized SO42-/TiO2 sample obtained is capable of completely decomposing RhB after 9 hours of irradiation by a 60 W LED lamp with a corresponding intensity of 9,500 Lux. However, when the SO42-/TiO2 is irradiated by the sunlight with the intensity of 65,000 Lux, it only takes 2 hours to completely decompose rhodamine B (RhB), facilitating the use of SO42-/TiO2 as a potential photocatalyst for the RhB photodegradation.


Jurnal Kimia ◽  
2020 ◽  
pp. 82
Author(s):  
D. A. D. N. Dewi ◽  
I N. Simpen ◽  
I W. Suarsa

A montmorillonite clay modified with semiconductor metal can act as a photocatalyst material. Montmorillonite clays were chosen because of their natural characteristics which are easily to be modified and have high specific surface area. This research aims to modify montmorillonite clay into photocatalyst material. The montmorillonite clay was intercalated using Fe2O3 to produce Fe2O3-pillared montmorillonite clay, then doped with TiO2 to form a photocatalyst material Fe2O3-PILC / TiO2. Modifications were intended to increase the specific surface area and number of active photocatalyst sites and thus increase the ability of photodegradation. The characterization carried out included characterizing the pillar formation using X-ray Diffraction (XRD), specific surface area by the BET method (Bruneau, Emmet, and Teller), a the number of surface acid-base sites by the titration method. Photocatalyst with the best character was Fe2O3-PILC / TiO2 1: 3 with specific surface area, number of acid and base sites respectively 45,947 m2/g, 20,1736 x 1023 sites/gram and 19,0044 x 1023 sites/gram. The result of photodegradation at optimum condition with visible light at pH 3 using 400 mg photocatalyst was 99.84%.   Keywords: photocatalyst, Fe2O3, montmorillonite clay, TiO2, rhodamine B


RSC Advances ◽  
2016 ◽  
Vol 6 (41) ◽  
pp. 35024-35035 ◽  
Author(s):  
Mallanaicker Myilsamy ◽  
Mani Mahalakshmi ◽  
Nallasivam Subha ◽  
Ariyamuthu Rajabhuvaneswari ◽  
Velayutham Murugesan

Graphene and europium co-doped on TiO2 nanocomposites synergistically enhanced the photocatalytic degradation of 4-chlorophenol under visible light due to the enhanced specific surface area with red shift and improved charge transfer efficiency.


Sign in / Sign up

Export Citation Format

Share Document