Study on growth characteristics of Ib-type diamond in an Fe–Ni–C–S system

CrystEngComm ◽  
2019 ◽  
Vol 21 (40) ◽  
pp. 6010-6017 ◽  
Author(s):  
Shuai Fang ◽  
Hongan Ma ◽  
Zhanke Wang ◽  
Zhiqiang Yang ◽  
Zheng-hao Cai ◽  
...  

FeS is the main sulfur-containing compound in natural diamond inclusions.

CrystEngComm ◽  
2021 ◽  
Author(s):  
Shuai Fang ◽  
Yongkui Wang ◽  
Liangchao Chen ◽  
Zhiyun Lu ◽  
Zhenghao Cai ◽  
...  

Pressure is a necessary condition for the growth of natural diamond. Studying the effect of pressure on the nitrogen content of diamond is important for exploring the growth mechanism of...


2019 ◽  
Vol 43 (14) ◽  
pp. 5414-5422 ◽  
Author(s):  
Keke Wen ◽  
Xiao Pan ◽  
Songyan Feng ◽  
Wenpeng Wu ◽  
Xugeng Guo ◽  
...  

The properties of designed sulfur-containing azaacene electron transport materials by changing side chains are theoretically investigated.


CrystEngComm ◽  
2020 ◽  
Vol 22 (22) ◽  
pp. 3854-3862 ◽  
Author(s):  
Shuai Fang ◽  
Hongan Ma ◽  
Zheng hao Cai ◽  
Chun xiao Wang ◽  
Chao Fang ◽  
...  

Fe3O4 is a common earth mineral, which often exists in the form of inclusions in natural diamond.


2019 ◽  
Vol 26 (5) ◽  
pp. 1763-1768 ◽  
Author(s):  
Michelle D. Wenz ◽  
Steven D. Jacobsen ◽  
Dongzhou Zhang ◽  
Margo Regier ◽  
Hannah J. Bausch ◽  
...  

Mineral inclusions in natural diamond are widely studied for the insight that they provide into the geochemistry and dynamics of the Earth's interior. A major challenge in achieving thorough yet high rates of analysis of mineral inclusions in diamond derives from the micrometre-scale of most inclusions, often requiring synchrotron radiation sources for diffraction. Centering microinclusions for diffraction with a highly focused synchrotron beam cannot be achieved optically because of the very high index of refraction of diamond. A fast, high-throughput method for identification of micromineral inclusions in diamond has been developed at the GeoSoilEnviro Center for Advanced Radiation Sources (GSECARS), Advanced Photon Source, Argonne National Laboratory, USA. Diamonds and their inclusions are imaged using synchrotron 3D computed X-ray microtomography on beamline 13-BM-D of GSECARS. The location of every inclusion is then pinpointed onto the coordinate system of the six-circle goniometer of the single-crystal diffractometer on beamline 13-BM-C. Because the bending magnet branch 13-BM is divided and delivered into 13-BM-C and 13-BM-D stations simultaneously, numerous diamonds can be examined during coordinated runs. The fast, high-throughput capability of the methodology is demonstrated by collecting 3D diffraction data on 53 diamond inclusions from Juína, Brazil, within a total of about 72 h of beam time.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Yongkui Wang ◽  
Zhiwen Wang ◽  
Zhiyun Lu ◽  
Zhenghao Cai ◽  
Shuai Fang ◽  
...  

Silicon carbide (SiC) is a substance found in natural diamond inclusions. Analyzing the influence of SiC doping on the properties of synthetic diamonds is vital to understanding the growth mechanism...


Author(s):  
E.M. Kuhn ◽  
K.D. Marenus ◽  
M. Beer

Fibers composed of different types of collagen cannot be differentiated by conventional electron microscopic stains. We are developing staining procedures aimed at identifying collagen fibers of different types.Pt(Gly-L-Met)Cl binds specifically to sulfur-containing amino acids. Different collagens have methionine (met) residues at somewhat different positions. A good correspondence has been reported between known met positions and Pt(GLM) bands in rat Type I SLS (collagen aggregates in which molecules lie adjacent to each other in exact register). We have confirmed this relationship in Type III collagen SLS (Fig. 1).


Author(s):  
Bernd Tesche ◽  
Tobias Schilling

The objective of our work is to determine:a) whether both of the imaging methods (TEM, STM) yield comparable data andb) which method is better suited for a reliable structure analysis of microclusters smaller than 1.5 nm, where a deviation of the bulk structure is expected.The silver was evaporated in a bell-jar system (p 10−5 pa) and deposited onto a 6 nm thick amorphous carbon film and a freshly cleaved highly oriented pyrolytic graphite (HOPG).The average deposited Ag thickness is 0.1 nm, controlled by a quartz crystal microbalance at a deposition rate of 0.02 nm/sec. The high resolution TEM investigations (100 kV) were executed by a hollow-cone illumination (HCI). For the STM investigations a commercial STM was used. With special vibration isolation we achieved a resolution of 0.06 nm (inserted diffraction image in Fig. 1c). The carbon film shows the remarkable reduction in noise by using HCI (Fig. 1a). The HOPG substrate (Fig. 1b), cleaved in sheets thinner than 30 nm for the TEM investigations, shows the typical arrangement of a nearly perfect stacking order and varying degrees of rotational disorder (i.e. artificial single crystals). The STM image (Fig. 1c) demonstrates the high degree of order in HOPG with atomic resolution.


Author(s):  
J C Walmsley ◽  
A R Lang

Interest in the defects and impurities in natural diamond, which are found in even the most perfect stone, is driven by the fact that diamond growth occurs at a depth of over 120Km. They display characteristics associated with their origin and their journey through the mantle to the surface of the Earth. An optical classification scheme for diamond exists based largely on the presence and segregation of nitrogen. For example type Ia, which includes 98% of all natural diamonds, contain nitrogen aggregated into small non-paramagnetic clusters and usually contain sub-micrometre platelet defects on {100} planes. Numerous transmission electron microscope (TEM) studies of these platelets and associated features have been made e.g. . Some diamonds, however, contain imperfections and impurities that place them outside this main classification scheme. Two such types are described.First, coated-diamonds which possess gem quality cores enclosed by a rind that is rich in submicrometre sized mineral inclusions. The transition from core to coat is quite sharp indicating a sudden change in growth conditions, Figure 1. As part of a TEM study of the inclusions apatite has been identified as a major constituent of the impurity present in many inclusion cavities, Figure 2.


2020 ◽  
Vol 48 (2) ◽  
pp. 613-620
Author(s):  
Clara Ortegón Salas ◽  
Katharina Schneider ◽  
Christopher Horst Lillig ◽  
Manuela Gellert

Processing of and responding to various signals is an essential cellular function that influences survival, homeostasis, development, and cell death. Extra- or intracellular signals are perceived via specific receptors and transduced in a particular signalling pathway that results in a precise response. Reversible post-translational redox modifications of cysteinyl and methionyl residues have been characterised in countless signal transduction pathways. Due to the low reactivity of most sulfur-containing amino acid side chains with hydrogen peroxide, for instance, and also to ensure specificity, redox signalling requires catalysis, just like phosphorylation signalling requires kinases and phosphatases. While reducing enzymes of both cysteinyl- and methionyl-derivates have been characterised in great detail before, the discovery and characterisation of MICAL proteins evinced the first examples of specific oxidases in signal transduction. This article provides an overview of the functions of MICAL proteins in the redox regulation of cellular functions.


2006 ◽  
Vol 175 (4S) ◽  
pp. 361-361
Author(s):  
Paul L. Crispen ◽  
Rosalia Viterbo ◽  
Richard E. Greenberg ◽  
David Y.T. Chen ◽  
Robert G. Uzzo

Sign in / Sign up

Export Citation Format

Share Document