scholarly journals Resolving complex hierarchies in chemical mixtures: how chemometrics may serve in understanding the immune system

2019 ◽  
Vol 218 ◽  
pp. 317-338 ◽  
Author(s):  
Gerjen Herman Tinnevelt ◽  
Jeroen Jasper Jansen

In this paper, we explore the ways in which manual sequential gating, machine learning and chemometrics compare, and show complementary strength in the analyses of the hierarchies of multicolour flow cytometry data, to resolve molecular and cell mixtures into insightful contributions to the immune system.

2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e14138-e14138
Author(s):  
Beung-Chul AHN ◽  
Kyoung Ho Pyo ◽  
Dongmin Jung ◽  
Chun-Feng Xin ◽  
Chang Gon Kim ◽  
...  

e14138 Background: Immune checkpoint inhibitors have become breakthrough therapy for various types of cancers. However, regarding their total response rate around 20% based on clinical trials, predicting accurate aPD-1 response for individual patient is unestablished. The presence of PD-L1 expression or tumor infiltrating lymphocyte may be used as indicators of response but are limited. We developed models using machine learning methods to predict the aPD-1 response. Methods: A total of 126 advanced NSCLC patients treated with the aPD-1 were enrolled. Their clinical characteristics, treatment outcomes, and adverse events were collected. Total clinical data (n = 126) consist of 15 variables were divided into two subsets, discovery set (n = 63) and test set (n = 63). Thirteen supervised learning algorithms including support vector machine and regularized regression (lasso, ridge, elastic net) were applied on discovery set for model development and on test set for validation. Each model were evaluated according to the ROC curve and cross-validation method. Same methods were used to the subset which had additional flow cytometry data (n = 40). Results: The median age was 64 and 69.8% were male. Adenocarcinoma was predominant (69.8%) and twenty patients (15.1%) were driver mutation positive. Clinical data set (n = 126) demonstrated that the Ridge regression (AUC: 0.79) was the best model for prediction. Of 15 clinical variables, tumor burden, age, ECOG PS and PD-L1, were most important based on the random forest algorithm. When we merged the clinical and flow cytometry data, the Ridge regression model (AUC:0.82) showed better performance compared to using clinical data only. Among 52 variables of merged set, the top most important immune markers were as follows: CD3+CD8+CD25+/Teff-CD28, CD3+CD8+CD25-/Teff-Ki-67, and CD3+CD8+CD25+/Teff-NY-ESO/Teff-PD-1, which indicate activated tumor specific T cell subset. Conclusions: Our machine learning based model has benefit for predicting aPD-1 responses. After further validation in independent patient cohort, the supervised learning based non-invasive predictive score can be established to predict aPD-1 response.


Methods ◽  
2017 ◽  
Vol 112 ◽  
pp. 201-210 ◽  
Author(s):  
Holger Hennig ◽  
Paul Rees ◽  
Thomas Blasi ◽  
Lee Kamentsky ◽  
Jane Hung ◽  
...  

Author(s):  
Brian Muchmore ◽  
Lucas Le Lann ◽  
Christophe Jamin ◽  
Concepción Marañon ◽  
Jacque-Olivier Pers ◽  
...  

2020 ◽  
Author(s):  
Paul D. Simonson ◽  
Yue Wu ◽  
David Wu ◽  
Jonathan R. Fromm ◽  
Aaron Y. Lee

AbstractObjectivesAutomated classification of flow cytometry data has the potential to reduce errors and accelerate flow cytometry interpretation. We desired a machine learning approach that is accurate, intuitively easy to understand, and highlights the cells that are most important in the algorithm’s prediction for a given case.MethodsWe developed an ensemble of convolutional neural networks (CNNs) for classification and visualization of impactful cell populations in detecting classic Hodgkin lymphoma, using two-dimensional (2D) histograms. Data from 977 and 245 clinical flow cytometry cases were used for training and testing, respectively. 78 non-gated 2D histograms were created per flow cytometry file. SHAP values were calculated to determine the most impactful 2D histograms and regions within the histograms. The SHAP values from all 78 histograms were then projected back to the original cells data for gating and visualization using standard flow cytometry software.ResultsThe algorithm achieved 67.7% recall (sensitivity), 82.4 % precision, and 0.92 AUROC. Visualization of the important cell populations in making individual predictions demonstrated correlations with known biology.ConclusionsThe method presented enables model explainability while highlighting important cell populations in individual flow cytometry specimens, with potential applications in both diagnosis and discovery of previously overlooked key cell populations.


2020 ◽  
Author(s):  
Mihaela E. Sardiu ◽  
Box C. Andrew ◽  
Jeff Haug ◽  
Michael P. Washburn

AbstractMachine learning and topological analysis methods are becoming increasingly used on various large-scale omics datasets. Modern high dimensional flow cytometry data sets share many features with other omics datasets like genomics and proteomics. For example, genomics or proteomics datasets can be sparse and have high dimensionality, and flow cytometry datasets can also share these features. This makes flow cytometry data potentially a suitable candidate for employing machine learning and topological scoring strategies, for example, to gain novel insights into patterns within the data. We have previously developed the Topological Score (TopS) and implemented it for the analysis of quantitative protein interaction network datasets. Here we show that the TopS approach for large scale data analysis is applicable to the analysis of a previously described flow cytometry sorted human hematopoietic stem cell dataset. We demonstrate that TopS is capable of effectively sorting this dataset into cell populations and identify rare cell populations. We demonstrate the utility of TopS when coupled with multiple approaches including topological data analysis, X-shift clustering, and t-Distributed Stochastic Neighbor Embedding (t-SNE). Our results suggest that TopS could be effectively used to analyze large scale flow cytometry datasets to find rare cell populations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yersultan Mirasbekov ◽  
Adina Zhumakhanova ◽  
Almira Zhantuyakova ◽  
Kuanysh Sarkytbayev ◽  
Dmitry V. Malashenkov ◽  
...  

AbstractA machine learning approach was employed to detect and quantify Microcystis colonial morphospecies using FlowCAM-based imaging flow cytometry. The system was trained and tested using samples from a long-term mesocosm experiment (LMWE, Central Jutland, Denmark). The statistical validation of the classification approaches was performed using Hellinger distances, Bray–Curtis dissimilarity, and Kullback–Leibler divergence. The semi-automatic classification based on well-balanced training sets from Microcystis seasonal bloom provided a high level of intergeneric accuracy (96–100%) but relatively low intrageneric accuracy (67–78%). Our results provide a proof-of-concept of how machine learning approaches can be applied to analyze the colonial microalgae. This approach allowed to evaluate Microcystis seasonal bloom in individual mesocosms with high level of temporal and spatial resolution. The observation that some Microcystis morphotypes completely disappeared and re-appeared along the mesocosm experiment timeline supports the hypothesis of the main transition pathways of colonial Microcystis morphoforms. We demonstrated that significant changes in the training sets with colonial images required for accurate classification of Microcystis spp. from time points differed by only two weeks due to Microcystis high phenotypic heterogeneity during the bloom. We conclude that automatic methods not only allow a performance level of human taxonomist, and thus be a valuable time-saving tool in the routine-like identification of colonial phytoplankton taxa, but also can be applied to increase temporal and spatial resolution of the study.


2009 ◽  
Vol 2009 ◽  
pp. 1-2
Author(s):  
Raphael Gottardo ◽  
Ryan R. Brinkman ◽  
George Luta ◽  
Matt P. Wand

Sign in / Sign up

Export Citation Format

Share Document