Graphene-nanoscroll-based Integrated and self-standing electrode with a sandwich structure for lithium sulfur batteries

2020 ◽  
Vol 7 (3) ◽  
pp. 592-596 ◽  
Author(s):  
Yi Guo ◽  
Yin Zhang ◽  
Yali Sun ◽  
Yun Zhang ◽  
Hao Wu

A sandwich-like and self-standing electrode integrating a current collector, active material and interlayer provides multifunctional polysulfide-trapping ability in lithium sulfur batteries.

2019 ◽  
Vol 55 (11) ◽  
pp. 1655-1658 ◽  
Author(s):  
Hao Zhao ◽  
Pei Yang ◽  
Meili Du ◽  
Wenxiang He ◽  
Meng Liu ◽  
...  

A novel cathode structure combines the sulfur host and the current collector together, increasing the sulfur content by over 20%.


2005 ◽  
Vol 486-487 ◽  
pp. 650-653 ◽  
Author(s):  
Gyu Bong Cho ◽  
Sang Sik Jeong ◽  
Soo Moon Park ◽  
Tae Hyun Nam

A 49.8 at.%Ti-50.2 at.%Ni shape memory alloy was applied to a current collector of positive electrode for lithium/sulfur (Li/S) battery. Flexible austenitic phase having pseudoelasticity dominated in the Ti-Ni current collector at room temperature. In the discharge curve, two plateau regions due to the lithium polysulfide (Li2Sn) and the lithium sulfide (Li2S) were obviously observed. The initial discharge capacity was 1068 mAh/g for Li/S cell with the Al current collector, and that of the cell with the Ti-Ni current collector reached 1140 mAh/g. A little bit of declined cycle performance was associated with decreased sulfur utilization owing to a reaction with dissolved Ti and Ni elements. Compared with the Al current collector used commercially, the Ti-Ni alloy with pseudoelasticity was more suitable to apply for the current collector of Li/S battery.


2016 ◽  
Vol 52 (73) ◽  
pp. 10964-10967 ◽  
Author(s):  
Long Qie ◽  
Arumugam Manthiram

Long-term cycling stability with high-loading sulfur cathodes has been achieved using N,O-codoped carbon hollow fibers as the current collector and Li2S6 as the starting active material.


2021 ◽  
Vol 285 ◽  
pp. 129115
Author(s):  
Natsuki Nakamura ◽  
Tokihiko Yokoshima ◽  
Hiroki Nara ◽  
Hitoshi Mikuriya ◽  
Ayahito Shiosaki ◽  
...  

2015 ◽  
Author(s):  
◽  
Donald A. Dornbusch

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] The following dissertation investigates different aspects of lithium-sulfur batteries. Lithium-sulfur batteries have a higher theoretical capacity than current lithium-ion chemistries. First, a study on the lithium-metal electrode and the formation of dendrites investigates how flow impacts the failure from dendrites of these electrodes. Second, a study relying on charging to avoid the soluble intermediates generated through charge/discharge of sulfur-cathodes which are the primary cause of capacity fade in these systems. Third, sulfur is polymerized through radical polymerization with diene comonomers in order to reduce the solubility and mobility of the intermediates generated during cycling. Using Brunauer-Emmett-Teller (BET) theory, the surface area and pore volume can be observed before and after cycling demonstrating the amount of mobility the active material has during cycling. Finally, a study on the conduction phenomena in convection batteries is studied through a literature review and COMSOL simulation.


MRS Advances ◽  
2018 ◽  
Vol 3 (60) ◽  
pp. 3501-3506 ◽  
Author(s):  
Gaind P. Pandey ◽  
Joshua Adkins ◽  
Lamartine Meda

ABSTRACTLithium sulfide (Li2S) is one of the most attractive cathode materials for high energy density lithium batteries as it has a high theoretical capacity of 1166 mA h g-1. However, Li2S suffers from poor rate performance and short cycle life due to its insulating nature and polysulfide shuttle during cycling. In this work, we report a facile and viable approach to address these issues. We propose a method to synthesize a Li2S based nanocomposite cathode material by dissolving Li2S as the active material, polyvinylpyrrolidone (PVP) as the carbon precursor, and graphene oxide (GO) as a matrix to enhance the conductivity, followed by a co-precipitation and high-temperature carbonization process. The Li2S/rGO cathode yields an exceptionally high initial capacity of 817 mAh g-1 based on Li2S mass at C/20 rate and also shows a good cycling performance. The carbon-coated Li2S/rGO cathode demonstrates the capability of robust core-shell nanostructures for different rates and improved capacity retention, revealing carbon coated Li2S/rGO composites as an outstanding system for high-performance lithium-sulfur batteries.


Sign in / Sign up

Export Citation Format

Share Document