scholarly journals Photocatalytic activity of Ni0.5Zn0.5Fe2O4@polyaniline decorated BiOCl for azo dye degradation under visible light – integrated role and degradation kinetics interpretation

RSC Advances ◽  
2019 ◽  
Vol 9 (16) ◽  
pp. 8977-8993 ◽  
Author(s):  
Ruchika Tanwar ◽  
Uttam Kumar Mandal

The photocatalytic activity of BiOCl is tuned through heterogeneous decoration with an integrated Ni0.5Zn0.5Fe2O4@polyaniline. The outstanding degradation capacity, effects of parameters on degradation kinetics and a kinetic model using regression analysis is reported.

Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3948
Author(s):  
Lingfang Qiu ◽  
Zhiwei Zhou ◽  
Mengfan Ma ◽  
Ping Li ◽  
Jinyong Lu ◽  
...  

Novel visible-light responded aluminosilicophosphate-5 (SAPO-5)/g-C3N4 composite has been easily constructed by thermal polymerization for the mixture of SAPO-5, NH4Cl, and dicyandiamide. The photocatalytic activity of SAPO-5/g-C3N4 is evaluated by degrading RhB (30 mg/L) under visible light illumination (λ > 420 nm). The effects of SAPO-5 incorporation proportion and initial RhB concentration on the photocatalytic performance have been discussed in detail. The optimized SAPO-5/g-C3N4 composite shows promising degradation efficiency which is 40.6% higher than that of pure g-C3N4. The degradation rate improves from 0.007 min−1 to 0.022 min−1, which is a comparable photocatalytic performance compared with other g-C3N4-based heterojunctions for dye degradation. The migration of photo-induced electrons from g-C3N4 to the Al site of SAPO-5 should promote the photo-induced electron-hole pairs separation rate of g-C3N4 efficiently. Furthermore, the redox reactions for RhB degradation occur on the photo-induced holes in the g-C3N4 and Al sites in SAPO-5, respectively. This achievement not only improves the photocatalytic activity of g-C3N4 efficiently, but also broadens the application of SAPOs in the photocatalytic field.


2011 ◽  
Vol 335-336 ◽  
pp. 1385-1390 ◽  
Author(s):  
Shuo Wiei Zhao ◽  
Hui Xu ◽  
Hua Ming Li ◽  
Yuan Guo Xu

In order to improve the photocatalytic activity, Co was successfully loaded into Ag3VO4 by using impregnation process. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS) and diffuse reflectance spectroscopy (DRS). The XRD and SEM–EDS analyses revealed that Co ion was dispersed on Ag3VO4. The DRS results indicated that the absorption edge of the Co–Ag3VO4 catalyst shifted to longer wavelength. The enhanced photocatalytic activity of Co–Ag3VO4 for Methylene Blue(MB) dye degradation under visible light irradiation was due to its wider absorption edge and higher separation rate of photo-generated electron and holes. In the experimental conditions, it is demonstrated that the MB was effectively degraded by more than 95% within 40 min when the Co–Ag3VO4 catalyst was calcined at 300°C with 1 wt.% Co content.


2021 ◽  
Vol 02 ◽  
Author(s):  
Amanda Carolina Soares Jucá ◽  
Francisco Henrique Pereira Lopes ◽  
Herbert Vieira Silva-Júnior ◽  
Lara Kelly Ribeiro Silva ◽  
Elson Longo ◽  
...  

Aims: In the present study, we investigate the photocatalytic properties of α-Ag2WO4 nanocrystals-modified Palygorskite (PAL) clay synthesized by the impregnation method. The PAL clay was chemically purified and heat-treated (500 ºC for 2 h), which served as an excellent supporting matrix for loading α-Ag2WO4(α-AWO) nanocrystals. Background: Water contamination is one of the most serious problems affecting human health, ecosystem survival, and the economic growth of societies. Industrial effluents, such as textile dyes, when not treated and improperly discharged into water resources are considered the main cause of water pollution. Thus the scientific community has been developing effective remediation technologies based on advanced oxidative processes to reduce the harmful effects of these organic pollutants. Objective: Improve the photocatalytic activity of PAL clay with α-AWO nanocrystals to degradation of Rhodamine B (RhB) dye. Methods: We purify and heat-treated the PAL clay, synthesize nanocrystals ofα-AWO nanocrystals and modify PAL clay with 30% α-AWO nanocrystals by the impregnation method. The modified PAL clay was able to improve RhB dye degradation. The materials were characterized by XRD, RAMAN,FE-SEM, FT-IR, XRF, etc. The samples were used as photocatalysts under UV-C lamps for the degradation of RhB dye in order to analyze its catalytic performances. Results: ThePAL clay modified with 30% α-AWO nanocrystals showed a catalytic efficiency of 79%, and degradation kinetics about 16 times higher when compared to PAL-500 only purified and heat-treated at 500 ºC. In this way, this PAL-modified is an alternative as a low-cost photocatalyst for the degradation of RhB dye. Conclusion: Ultraviolet-Visiblespectra revealed that our materials have opticalband gap energies controlled by indirect and direct electronic transitions and suitable to be activated under ultraviolet illumination. The adequate amount (30 wt.%) of α-Ag2WO4 nanocrystals added to PAL brought significant improvement of photocatalytic activity for the degradation of rhodamine B. Finally, a photocatalytic mechanism was proposed in detail.


2016 ◽  
Vol 45 (43) ◽  
pp. 17521-17529 ◽  
Author(s):  
Shuai-Ru Zhu ◽  
Peng-Fei Liu ◽  
Meng-Ke Wu ◽  
Wen-Na Zhao ◽  
Guo-Chang Li ◽  
...  

BiOBr/NH2-MIL-125(Ti) composite photocatalysts have been prepared by incorporating NH2-MIL-125(Ti) with BiOBr and exhibited improved photocatalytic activity under visible light compared to pristine BiOBr and NH2-MIL-125(Ti).


Ionics ◽  
2018 ◽  
Vol 25 (2) ◽  
pp. 773-784 ◽  
Author(s):  
Boobas Singaram ◽  
Jayaprakash Jeyaram ◽  
Ranjith Rajendran ◽  
Priyadharsan Arumugam ◽  
Krishnakumar Varadharajan

2010 ◽  
Vol 163 (1-2) ◽  
pp. 28-34 ◽  
Author(s):  
Pei-Jen Lu ◽  
Cheng-Wei Chien ◽  
Tai-Shang Chen ◽  
Jia-Ming Chern

Sign in / Sign up

Export Citation Format

Share Document