Azo dye degradation kinetics in TiO2 film-coated photoreactor

2010 ◽  
Vol 163 (1-2) ◽  
pp. 28-34 ◽  
Author(s):  
Pei-Jen Lu ◽  
Cheng-Wei Chien ◽  
Tai-Shang Chen ◽  
Jia-Ming Chern
RSC Advances ◽  
2019 ◽  
Vol 9 (16) ◽  
pp. 8977-8993 ◽  
Author(s):  
Ruchika Tanwar ◽  
Uttam Kumar Mandal

The photocatalytic activity of BiOCl is tuned through heterogeneous decoration with an integrated Ni0.5Zn0.5Fe2O4@polyaniline. The outstanding degradation capacity, effects of parameters on degradation kinetics and a kinetic model using regression analysis is reported.


Author(s):  
Natalija Koprivanac ◽  
Dinko Vujevic

Organic synthetic dyes are widely produced and used today. Significant losses of organic and inorganic content occurs during the manufacturing and application of dyes and its discharge in the effluent presents a threat to the eco-systems due to general toxicity and resistance to destruction by biological treatment methods. Particularly azo dyes are of special environmental concern due to their degradation products such as aromatic amines, which are considered highly carcinogenic. So, dyes have to be removed from coloured wastewater before discharge. However, traditional treatment methods (adsorption, coagulation/flocculation) mainly transfer the contaminants from wastewater to secondary waste. Therefore, advanced oxidation processes seem to be sustainable and clean technology to decolorize and minimize organic dyes content from wastewater. In this paper, degradation of an azo dye C.I. Direct Orange 39 (DO39) using Fenton type processes (Fe2+/H2O2, Fe3+/H2O2and Fe0/H2O2) has been performed. The molar ratio of Fenton’s type reagents has been varied in the range of 1 : 5 up to 1 : 50 at 0.5 and 1.0 mM concentrations of iron salts and iron powder. Experiments have been conducted for two hours in a batch reactor with magnetic stirring, ambient conditions and pH 3. The process efficiency and formation of degradation by-products have been determined on the basis of results obtained by UV/VIS spectrophotometric, total organic carbon (TOC) and high performance liquid chromatography (HPLC) analyses. The optimal Fenton and Fenton ``like" processes parameters have been applied in the photo reactor, too. It has been observed that simultaneous utilization of UV irradiation with Fenton's and Fenton ``like" reagents increases the degradation of DO39 dye. Degradation of the dye in dilute aqueous solution follows pseudo-first order kinetics. The maximal decolourization of 20 mg L-1 DO39 in water of 93.2% and TOC degradation of 76.9% were obtained using Fe3+/H2O2= 1 : 5 molar ratio. The results indicate that the treatment of DO39 dye wastewater with UV/Fe3 +/H2O2 system was found to be the most efficient.


2021 ◽  
Vol 02 ◽  
Author(s):  
Amanda Carolina Soares Jucá ◽  
Francisco Henrique Pereira Lopes ◽  
Herbert Vieira Silva-Júnior ◽  
Lara Kelly Ribeiro Silva ◽  
Elson Longo ◽  
...  

Aims: In the present study, we investigate the photocatalytic properties of α-Ag2WO4 nanocrystals-modified Palygorskite (PAL) clay synthesized by the impregnation method. The PAL clay was chemically purified and heat-treated (500 ºC for 2 h), which served as an excellent supporting matrix for loading α-Ag2WO4(α-AWO) nanocrystals. Background: Water contamination is one of the most serious problems affecting human health, ecosystem survival, and the economic growth of societies. Industrial effluents, such as textile dyes, when not treated and improperly discharged into water resources are considered the main cause of water pollution. Thus the scientific community has been developing effective remediation technologies based on advanced oxidative processes to reduce the harmful effects of these organic pollutants. Objective: Improve the photocatalytic activity of PAL clay with α-AWO nanocrystals to degradation of Rhodamine B (RhB) dye. Methods: We purify and heat-treated the PAL clay, synthesize nanocrystals ofα-AWO nanocrystals and modify PAL clay with 30% α-AWO nanocrystals by the impregnation method. The modified PAL clay was able to improve RhB dye degradation. The materials were characterized by XRD, RAMAN,FE-SEM, FT-IR, XRF, etc. The samples were used as photocatalysts under UV-C lamps for the degradation of RhB dye in order to analyze its catalytic performances. Results: ThePAL clay modified with 30% α-AWO nanocrystals showed a catalytic efficiency of 79%, and degradation kinetics about 16 times higher when compared to PAL-500 only purified and heat-treated at 500 ºC. In this way, this PAL-modified is an alternative as a low-cost photocatalyst for the degradation of RhB dye. Conclusion: Ultraviolet-Visiblespectra revealed that our materials have opticalband gap energies controlled by indirect and direct electronic transitions and suitable to be activated under ultraviolet illumination. The adequate amount (30 wt.%) of α-Ag2WO4 nanocrystals added to PAL brought significant improvement of photocatalytic activity for the degradation of rhodamine B. Finally, a photocatalytic mechanism was proposed in detail.


2013 ◽  
Vol 56 (5) ◽  
pp. 867-874 ◽  
Author(s):  
Marcus Vinicius Freire Andrade ◽  
Karla Mayara Lima da Silva ◽  
João Paulo da Silva Siqueira ◽  
Carlos Ronald Pessoa Wanderley ◽  
Rinaldo dos Santos Araújo ◽  
...  

Author(s):  
Kouakou Yao Urbain ◽  
Kambiré Ollo ◽  
Gnonsoro Urbain Paul ◽  
Eroi N’goran Sévérin ◽  
Trokourey Albert

Aims: The pollution of the environment by organic dyes in water is a matter of great concern. Wastewater containing dyes is difficult to treat by conventional wastewater treatment methods such as coagulation, ozonation, biological treatment, etc. This is why the implementation of an effective method by not generating pollutants secondary is necessary. The objective of this work is to study the degradation of remazol black, an azo dye, by the coupling of hydrogen peroxide - molybdenum oxide nanoparticle. The nanoparticles were synthesized by the aqueous sol-gel method using a reflux assembly. Study Design: Random design. Methodology: The nanoparticles were synthesized by the aqueous sol-gel method using a reflux assembly and then characterized by X-ray diffraction and using software origin to determine the particles size by Scherrer's formula. The influence of hydrogen peroxide, molybdenum oxide and hydrogen peroxide / molybdenum oxide coupling, and the degradation kinetics of remazol black were studied. We also studied the influence of the pH of the solution, the mass of molybdenum nanoparticles and the concentration of remazol black on the dye degradation process. Results: The results showed that the synthesized oxide is ammonium molybdenum trioxide NH3(MoO3)3) with a hexagonal structure and size 22.79 nm. The study of the catalytic effect revealed a degradation rate of 17%, 0.83% and 42% respectively for H2O2, NH3(MoO3)3 and the coupling NH3(MoO3)3/H2O2. The study also showed that the degradation of remazol black by the couple NH3(MoO3)3 /H2O2 is better at pH = 4 and for a mass of nanoparticles of 400 mg. This degradation kinetics are pseudo 1st order. In addition, the degradation rate decreases when the concentration of remazol black increases. The efficiency of the coupling (NH3(MoO3)3 / H2O2 showed at ambient temperature, that it was possible to remove about 60% of the initial color of remazol black from the water in a batch reaction. Conclusion: The reflux method makes it possible to synthesize molybdenum nanoparticles. The molybdenum oxide hetero-Fenton process is effective in removing remazol black dye from water.


Chemosphere ◽  
2017 ◽  
Vol 174 ◽  
pp. 76-81 ◽  
Author(s):  
Z. Deng ◽  
X.H. Zhang ◽  
K.C. Chan ◽  
L. Liu ◽  
T. Li

Author(s):  
Veena Gayathri Krishnaswamy

The limited availability of fresh water is a global crisis. The growing consumption of fresh water due to anthropogenic activities has taken its toll on available water resources. Unfortunately, water bodies are still used as sinks for waste water from domestic and industrial sources. Azo dyes account for the majority of all dye stuffs, produced because they are extensively used in the textile, paper, food, leather, cosmetics, and pharmaceutical industries. Bacterial degradation of azo dyes under certain environmental conditions has gained momentum as a method of treatment, as these are inexpensive, eco-friendly, and can be applied to wide range of such complex dyes. The enzymatic approach has attracted much interest with regard to degradation of azo dyes from wastewater. The oxido-reductive enzymes are responsible for generating highly reactive free radicals that undergo complex series of spontaneous cleavage reactions, due to the susceptibility of enzymes to inactivation in the presence of the other chemicals. The oxidoreductive enzymes, such as lignin peroxidase, laccases, tyrosinase, azoreductase, riboflavin reductive, polyphenol oxidase, and aminopyrine n-demethylase, have been mainly utilized in the bacterial degradation of azo dye. Along with the reductive enzymes, some investigators have demonstrated the involvement in some other enzymes, such as Lignin peroxides and other enzymes. This chapter reviews the importance of enzymes in dye degradation.


2020 ◽  
Vol 1 (7) ◽  
pp. 2407-2417
Author(s):  
Ozge Cavuslar ◽  
Emre Nakay ◽  
Umut Kazakoglu ◽  
Sirous Khabbaz Abkenar ◽  
Cleva W. Ow-Yang ◽  
...  

Small, stable cationic GNPs were produced by direct reduction of auric acid with linear PEI in water, and used as an effective catalyst for degradation of both cationic and anionic dyes.


Sign in / Sign up

Export Citation Format

Share Document