Nanoparticle diffusion during gelation of tetra poly(ethylene glycol) provides insight into nanoscale structural evolution

Soft Matter ◽  
2020 ◽  
Vol 16 (9) ◽  
pp. 2256-2265 ◽  
Author(s):  
Emmabeth Parrish ◽  
Katie A. Rose ◽  
Matteo Cargnello ◽  
Christopher B. Murray ◽  
Daeyeon Lee ◽  
...  

Single particle tracking (SPT) of PEG grafted nanoparticles (NPs) was used to examine the gelation of tetra poly(ethylene glycol) (TPEG) succinimidyl glutarate (TPEG-SG) and amine (TPEG-A) terminated 4-armed stars.

Soft Matter ◽  
2021 ◽  
Author(s):  
Katie A. Rose ◽  
Daeyeon Lee ◽  
Russell J. Composto

The effect of static silica particles on the dynamics of quantum dot (QD) nanoparticles grafted with a poly(ethylene glycol) (PEG) brush in hydrogel nanocomposites is investigated using single particle tracking (SPT).


Nanoscale ◽  
2015 ◽  
Vol 7 (32) ◽  
pp. 13671-13679 ◽  
Author(s):  
Edward D. H. Mansfield ◽  
Katy Sillence ◽  
Patrick Hole ◽  
Adrian C. Williams ◽  
Vitaliy V. Khutoryanskiy

The permeation of thiolated silica nanoparticles through porcine gastric mucosa can be significantly enhanced by their functionalization with either 5 kDa poly(2-ethyl-2-oxazoline) or poly(ethylene glycol). The enhancement of nanoparticle permeability through mucus gel is due to the “stealth” properties of these polymers.


2019 ◽  
Author(s):  
Yerim Lee ◽  
Carey Phelps ◽  
Tao Huang ◽  
Barmak Mostofian ◽  
Lei Wu ◽  
...  

AbstractMembrane nanodomains have been implicated in Ras signaling, but what these domains are and how they interact with Ras remain obscure. Using high throughput single particle tracking with photoactivated localization microscopy and detailed trajectory analysis, here we show that distinct membrane domains dictate KRas diffusion and trafficking in U2OS cells. KRas exhibits an immobile state in domains ∼70 nm in size, each embedded in a larger domain (∼200 nm) that confers intermediate mobility, while the rest of the membrane supports fast diffusion. Moreover, KRas is continuously removed from the membrane via the immobile state and replenished to the fast state, likely coupled to internalization and recycling. Importantly, both the diffusion and trafficking properties of KRas remain invariant over a broad range of protein expression levels. Our results reveal how membrane organization dictates KRas diffusion and trafficking and offer insight into how Ras signaling may be regulated through spatial mechanisms.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Yerim Lee ◽  
Carey Phelps ◽  
Tao Huang ◽  
Barmak Mostofian ◽  
Lei Wu ◽  
...  

Membrane nanodomains have been implicated in Ras signaling, but what these domains are and how they interact with Ras remain obscure. Here, using single particle tracking with photoactivated localization microscopy (spt-PALM) and detailed trajectory analysis, we show that distinct membrane domains dictate KRasG12D (an active KRas mutant) diffusion and trafficking in U2OS cells. KRasG12D exhibits an immobile state in ~70 nm domains, each embedded in a larger domain (~200 nm) that confers intermediate mobility, while the rest of the membrane supports fast diffusion. Moreover, KRasG12D is continuously removed from the membrane via the immobile state and replenished to the fast state, reminiscent of Ras internalization and recycling. Importantly, both the diffusion and trafficking properties of KRasG12D remain invariant over a broad range of protein expression levels. Our results reveal how membrane organization dictates membrane diffusion and trafficking of Ras and offer new insight into the spatial regulation of Ras signaling.


Sign in / Sign up

Export Citation Format

Share Document