A nanoarchitectured Na6Fe5(SO4)8/CNTs cathode for building a low-cost 3.6 V sodium-ion full battery with superior sodium storage

2019 ◽  
Vol 7 (24) ◽  
pp. 14656-14669 ◽  
Author(s):  
Shiyu Li ◽  
Xiaosheng Song ◽  
Xiaoxiao Kuai ◽  
Wenchang Zhu ◽  
Kai Tian ◽  
...  

A novel high-voltage cathode material Na6Fe5(SO4)8 (NFS) is successfully prepared for sodium-ion batteries for the first time. It is found that the NFS cathode shows a high working voltage of 3.7 V, together with an attractive energy density approaching 450 W h kg−1. And, based on an NFS@5%CNTs cathode and hard carbon (HC) anode, a full NFS@5%CNTs//HC cell can deliver an impressive energy density approaching 350 W h kg−1 and excellent cycling stability over 1000 cycles at 2C.

2015 ◽  
Vol 3 (12) ◽  
pp. 6271-6275 ◽  
Author(s):  
P. Ramesh Kumar ◽  
Young Hwa Jung ◽  
Chek Hai Lim ◽  
Do Kyung Kim

The reversible electrochemical activity of the Na3V2O2x(PO4)2F3−2x compound in an aqueous solution is reported for the first time.


2020 ◽  
Vol 8 (44) ◽  
pp. 23368-23375
Author(s):  
Shahid Mirza ◽  
Zihan Song ◽  
Hongzhang Zhang ◽  
Arshad Hussain ◽  
Huamin Zhang ◽  
...  

A pre-sodiation strategy of using Na4V2(PO4)3 cathode to compensate the irreversible capacity loss of hard carbon anode is demonstrated and improves the energy density of sodium ion batteries.


2016 ◽  
Vol 4 (2) ◽  
pp. 451-457 ◽  
Author(s):  
Rafael B. Araujo ◽  
M. S. Islam ◽  
Sudip Chakraborty ◽  
R. Ahuja

Sodium ion batteries have emerged as a good alternative to lithium based systems due to their low cost of production.


Author(s):  
kai qiu ◽  
chao zhang ◽  
mingxia yan ◽  
shouwang zhao ◽  
hongwei fan ◽  
...  

High-energy density and low cost sodium-ion batteries are being sought to meet increasing energy demand. Here, R-MnO2 is chosen as a cathode material of sodium-ion batteries owing to its low...


2020 ◽  
Vol 7 (2) ◽  
pp. 402-410 ◽  
Author(s):  
Ghulam Yasin ◽  
Muhammad Arif ◽  
Tahira Mehtab ◽  
Muhammad Shakeel ◽  
Muhammad Asim Mushtaq ◽  
...  

We designed a cost-effective and novel strategy for the construction of hard carbon spheres enveloped with graphene networks as a high performance anode material for sodium-ion batteries.


2016 ◽  
Vol 4 (34) ◽  
pp. 13046-13052 ◽  
Author(s):  
Pin Liu ◽  
Yunming Li ◽  
Yong-Sheng Hu ◽  
Hong Li ◽  
Liquan Chen ◽  
...  

This study reports a hard carbon material derived from a waste biomass of corn cob and the influence of carbonized temperature on electrochemical performance. This study provides a promising anode material with low cost, high initial coulombic efficiency and excellent cycle performance, making sodium-ion batteries closer to practical applications.


2021 ◽  
Vol 130 (1B) ◽  
pp. 59-67
Author(s):  
Thien Lan Tran ◽  
Huu Duc Luong ◽  
Trong Lam Pham ◽  
Viet Bac Phung ◽  
Van An Dinh

Based on the density functional theory, we propose a promising cathode material, Na2Fe3(SO4)4, applicable for sodium-ion batteries. The crystal structure, stability, average voltage, and diffusion mechanism are carefully investigated to evaluate the electrochemical properties. The proposed material exhibits a high voltage of 4.0 V during the Na extraction. A small polaron is proved to be formed preferably at the first nearest Fe sites to Na vacancy and simultaneously accompanies the Na vacancy during its migration. Four elementary diffusion processes of the polaron–Na vacancy complexes, namely two parallel and two crossing processes, have been explored. The significant difference of activation energies between parallel and crossing processes suggests the substantial effect of the small polaron migration on the Na vacancy diffusion. We found that the parallel process along the [001] direction has the lowest activation energy of 808 meV, implying that the Na vacancy preferably diffuses in a zigzag pathway along the [001] direction.


2017 ◽  
Vol 5 (3) ◽  
pp. 1300-1310 ◽  
Author(s):  
Deu S. Bhange ◽  
Ghulam Ali ◽  
Dong-Hyun Kim ◽  
Daniel A. Anang ◽  
Tae Joo Shin ◽  
...  

Layer structured Na3Ni2BiO6 with honeycomb ordering is explored as a new high voltage and long life cathode material for sodium-ion batteries.


2021 ◽  
Vol MA2021-01 (2) ◽  
pp. 111-111
Author(s):  
Zahra Karimi ◽  
Jaron Moon ◽  
Chanel Van Ginkel ◽  
Douglas U1302137 ◽  
Joshua Malzahn ◽  
...  

2019 ◽  
Vol 7 (21) ◽  
pp. 13197-13204 ◽  
Author(s):  
Wenli Pan ◽  
Wenhao Guan ◽  
Shuangyu Liu ◽  
Ben Bin Xu ◽  
Chu Liang ◽  
...  

A new high-voltage earth-abundant cathode for sodium-ion batteries, Na2Fe(SO4)2, is reported, combining high thermal stability and good moisture resistance.


Sign in / Sign up

Export Citation Format

Share Document