Planar all-solid-state rechargeable Zn–air batteries for compact wearable energy storage

2019 ◽  
Vol 7 (29) ◽  
pp. 17581-17593 ◽  
Author(s):  
Zhiqian Cao ◽  
Haibo Hu ◽  
Mingzai Wu ◽  
Kun Tang ◽  
Tongtong Jiang

Planar all-solid-state rechargeable Zn–air batteries with superior energy efficiency demonstrate a novel design for compact all-solid-state rechargeable ZABs towards next-generation wearable energy storage devices with high energy density and safety.

2020 ◽  
Vol 340 ◽  
pp. 135804 ◽  
Author(s):  
Liheng Wang ◽  
Xingke Ye ◽  
Yucan Zhu ◽  
Hedong Jiang ◽  
Jianxing Xia ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (34) ◽  
pp. 20173-20183
Author(s):  
Yasai Wang ◽  
Guilin Feng ◽  
Yang Wang ◽  
Zhenguo Wu ◽  
Yanxiao Chen ◽  
...  

Lithium–sulfur batteries are considered to be promising energy storage devices owing to their high energy density, relatively low price and abundant resources.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1523
Author(s):  
Lilian Schwich ◽  
Michael Küpers ◽  
Martin Finsterbusch ◽  
Andrea Schreiber ◽  
Dina Fattakhova-Rohlfing ◽  
...  

In the coming years, the demand for safe electrical energy storage devices with high energy density will increase drastically due to the electrification of the transportation sector and the need for stationary storage for renewable energies. Advanced battery concepts like all-solid-state batteries (ASBs) are considered one of the most promising candidates for future energy storage technologies. They offer several advantages over conventional Lithium-Ion Batteries (LIBs), especially with regard to stability, safety, and energy density. Hardly any recycling studies have been conducted, yet, but such examinations will play an important role when considering raw materials supply, sustainability of battery systems, CO2 footprint, and general strive towards a circular economy. Although different methods for recycling LIBs are already available, the transferability to ASBs is not straightforward due to differences in used materials and fabrication technologies, even if the chemistry does not change (e.g., Li-intercalation cathodes). Challenges in terms of the ceramic nature of the cell components and thus the necessity for specific recycling strategies are investigated here for the first time. As a major result, a recycling route based on inert shredding, a subsequent thermal treatment, and a sorting step is suggested, and transferring the extracted black mass to a dedicated hydrometallurgical recycling process is proposed. The hydrometallurgical approach is split into two scenarios differing in terms of solubility of the ASB-battery components. Hence, developing a full recycling concept is reached by this study, which will be experimentally examined in future research.


2020 ◽  
Vol 49 (23) ◽  
pp. 8790-8839
Author(s):  
Yun Zheng ◽  
Yuze Yao ◽  
Jiahua Ou ◽  
Matthew Li ◽  
Dan Luo ◽  
...  

All-solid-state lithium ion batteries (ASSLBs) are considered next-generation devices for energy storage due to their advantages in safety and potentially high energy density.


Author(s):  
Patrice Simon ◽  
Yury Gogotsi

Electrochemical capacitors, also known as supercapacitors, are energy storage devices that fill the gap between batteries and dielectric capacitors. Thanks to their unique features, they have a key role to play in energy storage and harvesting, acting as a complement to or even a replacement of batteries which has already been achieved in various applications. One of the challenges in the supercapacitor area is to increase their energy density. Some recent discoveries regarding ion adsorption in microporous carbon exhibiting pores in the nanometre range can help in designing the next generation of high-energy-density supercapacitors.


RSC Advances ◽  
2016 ◽  
Vol 6 (104) ◽  
pp. 102504-102512 ◽  
Author(s):  
J. M. Gonçalves ◽  
R. R. Guimarães ◽  
C. V. Nunes ◽  
A. Duarte ◽  
B. B. N. S. Brandão ◽  
...  

Described herein is a composite material based on rGO and α-NiCo(OH)2 nanoparticles combining very fast charge/discharge processes with the high energy density of batteries, suitable for application in high performance energy storage devices.


Sign in / Sign up

Export Citation Format

Share Document