Bioinspired large-scale production of multidimensional high-rate anodes for both liquid & solid-state lithium ion batteries

2019 ◽  
Vol 7 (40) ◽  
pp. 22958-22966 ◽  
Author(s):  
Shenghui Shen ◽  
Shengzhao Zhang ◽  
Shengjue Deng ◽  
Guoxiang Pan ◽  
Yadong Wang ◽  
...  

Herein, we firstly proposed multidimensional titanium niobium oxides (1D/2D/3D-TNO) via a versatile bioinspired template method, which employed as high-performance anodes for both liquid and solid state lithium ion batteries

2020 ◽  
Vol 48 ◽  
pp. 122-127 ◽  
Author(s):  
Feng Xiao ◽  
Xianghong Chen ◽  
Jiakui Zhang ◽  
Chunmao Huang ◽  
Tong Hu ◽  
...  

2014 ◽  
Vol 2 (24) ◽  
pp. 9118-9125 ◽  
Author(s):  
Renzong Hu ◽  
Wei Sun ◽  
Yulong Chen ◽  
Meiqin Zeng ◽  
Min Zhu

Plasma-assisted milled Si/graphene nanocomposite anode delivers high capacity and good cycleability in half and full cells using a LiMn2O4 cathode.


2017 ◽  
Vol 20 (4) ◽  
pp. 223-230 ◽  
Author(s):  
Keqiang Ding ◽  
Binjuan Wei ◽  
Yan Zhang ◽  
Chenxue Li ◽  
Xiaomi Shi ◽  
...  

A novel finding, that the calcined weathered stones (denoted as CWS) can be employed as the anode materials for lithium ion batteries (LIBs), is reported for the first time in this work. Under the air conditions, the weathered stones were respectively calcined at 400ºC (sample a), 600ºC (sample b) and 800ºC (sample c) for 2 h, with an intention to examine the influence of the calcination temperature on the physicochemical properties of the resultant materials. XRD results indicated that the main components of all the final products were SiO2. And the SEM images demonstrated that all the as-prepared samples were irregular and larger particles with no evident crystal structure. The results of the electrochemical measurements revealed that the initial discharge capacity of sample b was about 104 mAh g-1 at the current density of 100 mA g-1, which was remarkably larger than that of the employed pure SiO2 (50 mAh g-1). Interestingly, after 20 cycles, the discharge capacity of sample b was still maintained as high as 70 mAh g-1, along with a capacity retention rate of about 70%. Although the discharge capacity reported here was lower as compared to the currently reported anode materials, this novel finding was very meaningful to the large scale production of anode materials, mainly due to the rather lower cost and abundant resources as well as the simple preparation process.


2014 ◽  
Vol 07 (06) ◽  
pp. 1440008 ◽  
Author(s):  
Linlin Wang ◽  
Kaibin Tang ◽  
Min Zhang ◽  
Xiaozhu Zhang ◽  
Jingli Xu

Particle size effects on the electrochemical performance of the CuO particles toward lithium are essential. In this work, a low-cost, large-scale production but simple approach has been developed to fabricate CuO nanoparticles with an average size in ~ 130 nm through thermolysis of Cu ( OH )2 precursors. As anode materials for lithium ion batteries (LIBs), the CuO nanoparticles deliver a high reversible capacity of 540 mAh g-1 over 100 cycles at 0.5 C. It also exhibits a rate capacity of 405 mAh g-1 at 2 C. These results suggest that the facile synthetic method of producing the CuO nanoparticles can enhance cycle performance, superior to that of some different sizes of the CuO nanoparticles and many reported CuO -based anodes.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Manisha Phadatare ◽  
Rohan Patil ◽  
Nicklas Blomquist ◽  
Sven Forsberg ◽  
Jonas Örtegren ◽  
...  

Abstract To increase the energy storage density of lithium-ion batteries, silicon anodes have been explored due to their high capacity. One of the main challenges for silicon anodes are large volume variations during the lithiation processes. Recently, several high-performance schemes have been demonstrated with increased life cycles utilizing nanomaterials such as nanoparticles, nanowires, and thin films. However, a method that allows the large-scale production of silicon anodes remains to be demonstrated. Herein, we address this question by suggesting new scalable nanomaterial-based anodes. Si nanoparticles were grown on nanographite flakes by aerogel fabrication route from Si powder and nanographite mixture using polyvinyl alcohol (PVA). This silicon-nanographite aerogel electrode has stable specific capacity even at high current rates and exhibit good cyclic stability. The specific capacity is 455 mAh g−1 for 200th cycles with a coulombic efficiency of 97% at a current density 100 mA g−1.


2018 ◽  
Vol 382 ◽  
pp. 160-175 ◽  
Author(s):  
Joscha Schnell ◽  
Till Günther ◽  
Thomas Knoche ◽  
Christoph Vieider ◽  
Larissa Köhler ◽  
...  

2021 ◽  
pp. 2007864
Author(s):  
Woo Jin Hyun ◽  
Cory M. Thomas ◽  
Norman S. Luu ◽  
Mark C. Hersam

Sign in / Sign up

Export Citation Format

Share Document