scholarly journals Silicon-Nanographite Aerogel-Based Anodes for High Performance Lithium Ion Batteries

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Manisha Phadatare ◽  
Rohan Patil ◽  
Nicklas Blomquist ◽  
Sven Forsberg ◽  
Jonas Örtegren ◽  
...  

Abstract To increase the energy storage density of lithium-ion batteries, silicon anodes have been explored due to their high capacity. One of the main challenges for silicon anodes are large volume variations during the lithiation processes. Recently, several high-performance schemes have been demonstrated with increased life cycles utilizing nanomaterials such as nanoparticles, nanowires, and thin films. However, a method that allows the large-scale production of silicon anodes remains to be demonstrated. Herein, we address this question by suggesting new scalable nanomaterial-based anodes. Si nanoparticles were grown on nanographite flakes by aerogel fabrication route from Si powder and nanographite mixture using polyvinyl alcohol (PVA). This silicon-nanographite aerogel electrode has stable specific capacity even at high current rates and exhibit good cyclic stability. The specific capacity is 455 mAh g−1 for 200th cycles with a coulombic efficiency of 97% at a current density 100 mA g−1.

2014 ◽  
Vol 2 (24) ◽  
pp. 9118-9125 ◽  
Author(s):  
Renzong Hu ◽  
Wei Sun ◽  
Yulong Chen ◽  
Meiqin Zeng ◽  
Min Zhu

Plasma-assisted milled Si/graphene nanocomposite anode delivers high capacity and good cycleability in half and full cells using a LiMn2O4 cathode.


2012 ◽  
Vol 1440 ◽  
Author(s):  
Jiajia Tan ◽  
Ashutosh Tiwari

ABSTRACTLi2FeP2O7 is a newly developed polyanionic cathode material for high performance lithium ion batteries. It is considered very attractive due to its large specific capacity, good thermal and chemical stability, and environmental benignity. However, the application of Li2FeP2O7 is limited by its low ionic and electronic conductivities. To overcome the above problem, a solution-based technique was successfully developed to synthesize Li2FeP2O7 powders with very fine and uniform particle size (< 1 μm), achieving much faster kinetics. The obtained Li2FeP2O7 powders were tested in lithium ion batteries by measurements of cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge/discharge cycling. We found that the modified Li2FeP2O7 cathode could maintain a relatively high capacity even at fast discharge rates.


RSC Advances ◽  
2015 ◽  
Vol 5 (10) ◽  
pp. 7356-7362 ◽  
Author(s):  
Minchan Li ◽  
Wenxi Wang ◽  
Mingyang Yang ◽  
Fucong Lv ◽  
Lujie Cao ◽  
...  

A novel microcuboid-shaped C–Fe3O4 assembly consisting of ultrafine nanoparticles derived from Fe–MOFs exhibits a greatly enhanced performance with high specific capacity, excellent cycling stability and good rate capability as anode materials for lithium ion batteries.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Yongsheng Zhou ◽  
Yingchun Zhu ◽  
Bingshe Xu ◽  
Xueji Zhang ◽  
Khalid A. Al-Ghanim ◽  
...  

Abstract Lithium-ion batteries (LIBs) are considered new generation of large-scale energy-storage devices. However, LIBs suffer from a lack of desirable anode materials with excellent specific capacity and cycling stability. In this work, we design a novel hierarchical structure constructed by encapsulating cobalt sulfide nanowires within nitrogen-doped porous branched carbon nanotubes (NBNTs) for LIBs. The unique hierarchical Co9S8@NBNT electrode displayed a reversible specific capacity of 1310 mAh g−1 at a current density of 0.1 A g−1, and was able to maintain a stable reversible discharge capacity of 1109 mAh g−1 at a current density of 0.5 A g−1 with coulombic efficiency reaching almost 100% for 200 cycles. The excellent rate and cycling capabilities can be ascribed to the hierarchical porosity of the one-dimensional Co9S8@NBNT internetworks, the incorporation of nitrogen doping, and the carbon nanotube confinement of the active cobalt sulfide nanowires offering a proximate electron pathway for the isolated nanoparticles and shielding of the cobalt sulfide nanowires from pulverization over long cycling periods.


2016 ◽  
Vol 40 (10) ◽  
pp. 8202-8205 ◽  
Author(s):  
Yourong Wang ◽  
Kai Xie ◽  
Xu Guo ◽  
Wei Zhou ◽  
Guangsen Song ◽  
...  

A mesoporous nano-SiO2 anode delivers high specific capacity, good cycling stability and high Coulombic efficiency.


2019 ◽  
Vol 7 (40) ◽  
pp. 22958-22966 ◽  
Author(s):  
Shenghui Shen ◽  
Shengzhao Zhang ◽  
Shengjue Deng ◽  
Guoxiang Pan ◽  
Yadong Wang ◽  
...  

Herein, we firstly proposed multidimensional titanium niobium oxides (1D/2D/3D-TNO) via a versatile bioinspired template method, which employed as high-performance anodes for both liquid and solid state lithium ion batteries


Ionics ◽  
2019 ◽  
Vol 26 (2) ◽  
pp. 1057-1061
Author(s):  
Youzuo Hu ◽  
Xingquan Liu

AbstractOne-dimensional (1D) α-LiFeO2 nanorods are successfully prepared via a low-temperature solid-state reaction from α-FeOOH nanorods synthesized by hydrothermal process and used as cathode materials in lithium-ion batteries. As cathode material for lithium-ion batteries, the nanorods can achieve a high initial specific capacity of 165.85 mAh/g at 0.1 C for which a high capacity retention of 81.65% can still be obtained after 50 cycles. The excellent performance and cycling stability are attributed to the unique 1D nanostructure, which facilitates the rapid electron exchange and fast lithium-ion diffusion between electrolyte and cathode materials.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1161
Author(s):  
Fanan Kong ◽  
Yong Yue ◽  
Qingyin Li ◽  
Shijie Ren

Heteroatom doping is regarded as a promising approach to enhance the electrochemical performance of carbon materials, while the poor controllability of heteroatoms remains the main challenge. In this context, sulfur-doped graphdiyne (S-GDY) was successfully synthesized on the surface of copper foil using a sulfur-containing multi-acetylene monomer to form a uniform film. The S-GDY film possesses a porous structure and abundant sulfur atoms decorated homogeneously in the carbon skeleton, which facilitate the fast diffusion and storage of lithium ions. The lithium-ion batteries (LIBs) fabricated with S-GDY as anode exhibit excellent performance, including the high specific capacity of 920 mA h g−1 and superior rate performances. The LIBs also show long-term cycling stability under the high current density. This result could potentially provide a modular design principle for the construction of high-performance anode materials for lithium-ion batteries.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1071
Author(s):  
Xuli Ding ◽  
Daowei Liang ◽  
Hongda Zhao

Although the silicon oxide (SiO2) as an anode material shows potential and promise for lithium-ion batteries (LIBs), owing to its high capacity, low cost, abundance, and safety, severe capacity decay and sluggish charge transfer during the discharge–charge process has caused a serious challenge for available applications. Herein, a novel 3D porous silicon oxide@Pourous Carbon@Tin (SiO2@Pc@Sn) composite anode material was firstly designed and synthesized by freeze-drying and thermal-melting self-assembly, in which SiO2 microparticles were encapsulated in the porous carbon as well as Sn nanoballs being uniformly dispersed in the SiO2@Pc-like sesame seeds, effectively constructing a robust and conductive 3D porous Jujube cake-like architecture that is beneficial for fast ion transfer and high structural stability. Such a SiO2@Pc@Sn micro-nano hierarchical structure as a LIBs anode exhibits a large reversible specific capacity ~520 mAh·g−1, initial coulombic efficiency (ICE) ~52%, outstanding rate capability, and excellent cycling stability over 100 cycles. Furthermore, the phase evolution and underlying electrochemical mechanism during the charge–discharge process were further uncovered by cyclic voltammetry (CV) investigation.


Sign in / Sign up

Export Citation Format

Share Document