All-solid-state lithium-ion and lithium metal batteries – paving the way to large-scale production

2018 ◽  
Vol 382 ◽  
pp. 160-175 ◽  
Author(s):  
Joscha Schnell ◽  
Till Günther ◽  
Thomas Knoche ◽  
Christoph Vieider ◽  
Larissa Köhler ◽  
...  
2019 ◽  
Vol 7 (40) ◽  
pp. 22958-22966 ◽  
Author(s):  
Shenghui Shen ◽  
Shengzhao Zhang ◽  
Shengjue Deng ◽  
Guoxiang Pan ◽  
Yadong Wang ◽  
...  

Herein, we firstly proposed multidimensional titanium niobium oxides (1D/2D/3D-TNO) via a versatile bioinspired template method, which employed as high-performance anodes for both liquid and solid state lithium ion batteries


2014 ◽  
Vol 2 (24) ◽  
pp. 9118-9125 ◽  
Author(s):  
Renzong Hu ◽  
Wei Sun ◽  
Yulong Chen ◽  
Meiqin Zeng ◽  
Min Zhu

Plasma-assisted milled Si/graphene nanocomposite anode delivers high capacity and good cycleability in half and full cells using a LiMn2O4 cathode.


Batteries ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 75
Author(s):  
Shuo Yan ◽  
Chae-Ho Yim ◽  
Vladimir Pankov ◽  
Mackenzie Bauer ◽  
Elena Baranova ◽  
...  

Solid-state lithium metal batteries (LMBs) have become increasingly important in recent years due to their potential to offer higher energy density and enhanced safety compared to conventional liquid electrolyte-based lithium-ion batteries (LIBs). However, they require highly functional solid-state electrolytes (SSEs) and, therefore, many inorganic materials such as oxides of perovskite La2/3−xLi3xTiO3 (LLTO) and garnets La3Li7Zr2O12 (LLZO), sulfides Li10GeP2S12 (LGPS), and phosphates Li1+xAlxTi2−x(PO4)3x (LATP) are under investigation. Among these oxide materials, LLTO exhibits superior safety, wider electrochemical window (8 V vs. Li/Li+), and higher bulk conductivity values reaching in excess of 10−3 S cm−1 at ambient temperature, which is close to organic liquid-state electrolytes presently used in LIBs. However, recent studies focus primarily on composite or hybrid electrolytes that mix LLTO with organic polymeric materials. There are scarce studies of pure (100%) LLTO electrolytes in solid-state LMBs and there is a need to shed more light on this type of electrolyte and its potential for LMBs. Therefore, in our review, we first elaborated on the structure/property relationship between compositions of perovskites and their ionic conductivities. We then summarized current issues and some successful attempts for the fabrication of pure LLTO electrolytes. Their electrochemical and battery performances were also presented. We focused on tape casting as an effective method to prepare pure LLTO thin films that are compatible and can be easily integrated into existing roll-to-roll battery manufacturing processes. This review intends to shed some light on the design and manufacturing of LLTO for all-ceramic electrolytes towards safer and higher power density solid-state LMBs.


RSC Advances ◽  
2019 ◽  
Vol 9 (63) ◽  
pp. 36570-36577 ◽  
Author(s):  
Zili Xu ◽  
Fangfang Zhang ◽  
Weiran Lin ◽  
Haining Zhang

Polymer networks are efficient precursors for large scale production of hierarchical porous carbon.


Carbon ◽  
2015 ◽  
Vol 84 ◽  
pp. 469-478 ◽  
Author(s):  
Jianan Zhang ◽  
Binghao Guo ◽  
Yongqiang Yang ◽  
Wenzhuo Shen ◽  
Yanmei Wang ◽  
...  

2017 ◽  
Vol 20 (4) ◽  
pp. 223-230 ◽  
Author(s):  
Keqiang Ding ◽  
Binjuan Wei ◽  
Yan Zhang ◽  
Chenxue Li ◽  
Xiaomi Shi ◽  
...  

A novel finding, that the calcined weathered stones (denoted as CWS) can be employed as the anode materials for lithium ion batteries (LIBs), is reported for the first time in this work. Under the air conditions, the weathered stones were respectively calcined at 400ºC (sample a), 600ºC (sample b) and 800ºC (sample c) for 2 h, with an intention to examine the influence of the calcination temperature on the physicochemical properties of the resultant materials. XRD results indicated that the main components of all the final products were SiO2. And the SEM images demonstrated that all the as-prepared samples were irregular and larger particles with no evident crystal structure. The results of the electrochemical measurements revealed that the initial discharge capacity of sample b was about 104 mAh g-1 at the current density of 100 mA g-1, which was remarkably larger than that of the employed pure SiO2 (50 mAh g-1). Interestingly, after 20 cycles, the discharge capacity of sample b was still maintained as high as 70 mAh g-1, along with a capacity retention rate of about 70%. Although the discharge capacity reported here was lower as compared to the currently reported anode materials, this novel finding was very meaningful to the large scale production of anode materials, mainly due to the rather lower cost and abundant resources as well as the simple preparation process.


2014 ◽  
Vol 07 (06) ◽  
pp. 1440008 ◽  
Author(s):  
Linlin Wang ◽  
Kaibin Tang ◽  
Min Zhang ◽  
Xiaozhu Zhang ◽  
Jingli Xu

Particle size effects on the electrochemical performance of the CuO particles toward lithium are essential. In this work, a low-cost, large-scale production but simple approach has been developed to fabricate CuO nanoparticles with an average size in ~ 130 nm through thermolysis of Cu ( OH )2 precursors. As anode materials for lithium ion batteries (LIBs), the CuO nanoparticles deliver a high reversible capacity of 540 mAh g-1 over 100 cycles at 0.5 C. It also exhibits a rate capacity of 405 mAh g-1 at 2 C. These results suggest that the facile synthetic method of producing the CuO nanoparticles can enhance cycle performance, superior to that of some different sizes of the CuO nanoparticles and many reported CuO -based anodes.


Sign in / Sign up

Export Citation Format

Share Document