Strategies for inhibiting anode dendrite growth in lithium–sulfur batteries

2020 ◽  
Vol 8 (9) ◽  
pp. 4629-4646 ◽  
Author(s):  
Yaqiu Luo ◽  
Linli Guo ◽  
Min Xiao ◽  
Shuanjin Wang ◽  
Shan Ren ◽  
...  

Recently, lithium–sulfur batteries have attracted considerable attention due to their high theoretical specific capacity and high energy density. In this paper, we summarize the strategies of lithium anode improvement formulated in recent years.

Author(s):  
Maru Dessie Walle ◽  
You-Nian Liu

AbstractThe lithium–sulfur (Li–S) batteries are promising because of the high energy density, low cost, and natural abundance of sulfur material. Li–S batteries have suffered from severe capacity fading and poor cyclability, resulting in low sulfur utilization. Herein, S-DHCS/CNTs are synthesized by integration of a double-hollow carbon sphere (DHCS) with carbon nanotubes (CNTs), and the addition of sulfur in DHCS by melt impregnations. The proposed S-DHCS/CNTs can effectively confine sulfur and physically suppress the diffusion of polysulfides within the double-hollow structures. CNTs act as a conductive agent. S-DHCS/CNTs maintain the volume variations and accommodate high sulfur content 73 wt%. The designed S-DHCS/CNTs electrode with high sulfur loading (3.3 mg cm−2) and high areal capacity (5.6 mAh mg cm−2) shows a high initial specific capacity of 1709 mAh g−1 and maintains a reversible capacity of 730 mAh g−1 after 48 cycles at 0.2 C with high coulombic efficiency (100%). This work offers a fascinating strategy to design carbon-based material for high-performance lithium–sulfur batteries.


Author(s):  
Xiaohui Zhao ◽  
Chonglong Wang ◽  
Ziwei Li ◽  
Xuechun Hu ◽  
Amir A. Razzaq ◽  
...  

The lithium sulfur (Li-S) batteries have a high theoretical specific capacity (1675 mAh g-1) and energy density (2600 Wh kg-1), exerting a high perspective as the next-generation rechargeable batteries for...


2021 ◽  
Author(s):  
Zhikang Wang ◽  
Guiqiang Cao ◽  
Da Bi ◽  
Tian-Xiong Tan ◽  
Qingxue Lai ◽  
...  

Lithium-Sulfur batteries have been regarded as the most promising electrochemical energy storage device in consideration of their satisfactory high specific capacity and high energy density. However, the inferior conversion efficiency...


Nanoscale ◽  
2021 ◽  
Author(s):  
Fanglei Zeng ◽  
Fang Wang ◽  
Ning Li ◽  
Ke Meng Song ◽  
Shi-Ye Chang ◽  
...  

Li-S battery is considered as one of the most promising battery system because of its large theoretical capacity and high energy density. However, the “shuttle effect” of soluble polysulfides and...


RSC Advances ◽  
2020 ◽  
Vol 10 (34) ◽  
pp. 20173-20183
Author(s):  
Yasai Wang ◽  
Guilin Feng ◽  
Yang Wang ◽  
Zhenguo Wu ◽  
Yanxiao Chen ◽  
...  

Lithium–sulfur batteries are considered to be promising energy storage devices owing to their high energy density, relatively low price and abundant resources.


2018 ◽  
Vol 11 (9) ◽  
pp. 2372-2381 ◽  
Author(s):  
Gaoran Li ◽  
Wen Lei ◽  
Dan Luo ◽  
Yaping Deng ◽  
Zhiping Deng ◽  
...  

Stringed “tube on cube” hybrid architecture is developed for high-energy-density lithium–sulfur batteries with high sulfur loading and lean electrolyte.


2019 ◽  
Vol 31 (33) ◽  
pp. 1902228 ◽  
Author(s):  
Zhuosen Wang ◽  
Jiadong Shen ◽  
Jun Liu ◽  
Xijun Xu ◽  
Zhengbo Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document