Nitrogen-Doped Multi-Channel Carbon Nanofibers Incorporated with Nickel Nanoparticles as Multifunctional Modification of Separator for Ultra Stable Li-S Batteries

2021 ◽  
Author(s):  
Zhikang Wang ◽  
Guiqiang Cao ◽  
Da Bi ◽  
Tian-Xiong Tan ◽  
Qingxue Lai ◽  
...  

Lithium-Sulfur batteries have been regarded as the most promising electrochemical energy storage device in consideration of their satisfactory high specific capacity and high energy density. However, the inferior conversion efficiency...

Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1724 ◽  
Author(s):  
Benben Wei ◽  
Chaoqun Shang ◽  
Xiaoying Pan ◽  
Zhihong Chen ◽  
Lingling Shui ◽  
...  

Lithium–sulfur batteries (LSBs) are regarded as one of the most promising energy-recycling storage systems due to their high energy density (up to 2600 Wh kg−1), high theoretical specific capacity (as much as 1672 mAh g−1), environmental friendliness, and low cost. Originating from the complicated redox of lithium polysulfide intermediates, Li–S batteries suffer from several problems, restricting their application and commercialization. Such problems include the shuttle effect of polysulfides (Li2Sx (2 < x ≤ 8)), low electronic conductivity of S/Li2S/Li2S2, and large volumetric expansion of S upon lithiation. In this study, a lotus root-like nitrogen-doped carbon nanofiber (NCNF) structure, assembled with vanadium nitride (VN) catalysts, was fabricated as a 3D freestanding current collector for high performance LSBs. The lotus root-like NCNF structure, which had a multichannel porous nanostructure, was able to provide excellent (ionically/electronically) conductive networks, which promoted ion transport and physical confinement of lithium polysulfides. Further, the structure provided good electrolyte penetration, thereby enhancing the interface contact with active S. VN, with its narrow resolved band gap, showed high electrical conductivity, high catalytic effect and polar chemical adsorption of lithium polysulfides, which is ideal for accelerating the reversible redox kinetics of intermediate polysulfides to improve the utilization of S. Tests showed that the VN-decorated multichannel porous carbon nanofiber structure retained a high specific capacity of 1325 mAh g−1 after 100 cycles at 0.1 C, with a low capacity decay of 0.05% per cycle, and demonstrated excellent rate capability.


Author(s):  
Maru Dessie Walle ◽  
You-Nian Liu

AbstractThe lithium–sulfur (Li–S) batteries are promising because of the high energy density, low cost, and natural abundance of sulfur material. Li–S batteries have suffered from severe capacity fading and poor cyclability, resulting in low sulfur utilization. Herein, S-DHCS/CNTs are synthesized by integration of a double-hollow carbon sphere (DHCS) with carbon nanotubes (CNTs), and the addition of sulfur in DHCS by melt impregnations. The proposed S-DHCS/CNTs can effectively confine sulfur and physically suppress the diffusion of polysulfides within the double-hollow structures. CNTs act as a conductive agent. S-DHCS/CNTs maintain the volume variations and accommodate high sulfur content 73 wt%. The designed S-DHCS/CNTs electrode with high sulfur loading (3.3 mg cm−2) and high areal capacity (5.6 mAh mg cm−2) shows a high initial specific capacity of 1709 mAh g−1 and maintains a reversible capacity of 730 mAh g−1 after 48 cycles at 0.2 C with high coulombic efficiency (100%). This work offers a fascinating strategy to design carbon-based material for high-performance lithium–sulfur batteries.


2018 ◽  
Vol 11 (06) ◽  
pp. 1840007 ◽  
Author(s):  
Qian Wang ◽  
Chengkai Yang ◽  
Hui Tang ◽  
Kai Wu ◽  
Henghui Zhou

Lithium-sulfur batteries are considered as a promising candidate for the next-generation high energy density storage devices. However, they are still hindered by serious capacity decay on cycling caused by the dissolution of redox intermediates. Here, we designed a unique structure with polypyrrole (ppy) inserting into the graphene oxide (GO) sheet for accommodating sulfur. Such a sulfur host not only exhibits a good electronic and ionic conductivity, but also can suppress polysulfide dissolution effectively. With this advanced design, the composite cathode showed a high specific capacity of 548.4[Formula: see text]mA[Formula: see text]h[Formula: see text]g[Formula: see text] at 5.0 C. A stable Coulombic efficiency of [Formula: see text]99.5% and a capacity decay rate as low as 0.089% per cycle along with 300 cycles at 1.0 C were achieved for composite cathodes with 78[Formula: see text]wt.% of S. Besides, the interaction mechanism between PPy and lithium polysulfides (LPS) was investigated by density-functional theory (DFT), suggesting that only the polymerization of N atoms can bind strongly to Li ions of LPS rather than single N atoms. The 3D structure GO-PPy host with high conductivity and excellent trapping ability to LPS offered a viable strategy to design high-performance cathodes for Li–S batteries.


2020 ◽  
Vol 8 (9) ◽  
pp. 4629-4646 ◽  
Author(s):  
Yaqiu Luo ◽  
Linli Guo ◽  
Min Xiao ◽  
Shuanjin Wang ◽  
Shan Ren ◽  
...  

Recently, lithium–sulfur batteries have attracted considerable attention due to their high theoretical specific capacity and high energy density. In this paper, we summarize the strategies of lithium anode improvement formulated in recent years.


2021 ◽  
Author(s):  
Chaofei Guo ◽  
Jiaojiao Xu ◽  
Li-Ping Lv ◽  
Shuangqiang Chen ◽  
Weiwei Sun ◽  
...  

Lithium-sulfur batteries are attracting more attention for high theoretical capacity and high energy density. And in order to overcome the problem of short cycling performance, low sulfur loading and shuttle...


RSC Advances ◽  
2020 ◽  
Vol 10 (69) ◽  
pp. 41983-41992
Author(s):  
Xinxin Ji ◽  
Qian Li ◽  
Haoquan Yu ◽  
Xiaolin Hu ◽  
Yuanzheng Luo ◽  
...  

Lithium–sulfur (Li–S) batteries have attracted considerable attention due to their ultra-high specific capacity and energy density.


Author(s):  
Weikang Gao ◽  
Zhide Wang ◽  
Chengxin Peng ◽  
Shifei Kang ◽  
Lifeng Cui

With the merits of high energy density and environmental friendliness, lithium-sulfur battery (LSB) has been perceived as a next-era energy storage device. However, issues such as insulating nature of sulfur,...


2015 ◽  
Vol 3 (37) ◽  
pp. 18913-18919 ◽  
Author(s):  
Su Zhang ◽  
Meinan Liu ◽  
Fei Ma ◽  
Fangmin Ye ◽  
Hongfei Li ◽  
...  

High energy density lithium sulfur batteries with 804 Wh/kg were reported based on sheet-like Li2S@C composites with the assistance of nitrogen doped carbon nanotube film.


NANO ◽  
2021 ◽  
Author(s):  
Wei Zhao ◽  
Wangjun Feng ◽  
Zhaojiao Shi ◽  
Jingzhou Chen

To fulfill the increasing energy demand, lithium-sulfur batteries (LIBs) are considered one of the most promising energy storage devices for the next generation because of their high specific capacity (1675[Formula: see text]mAh[Formula: see text]g[Formula: see text] and high energy density (2600[Formula: see text]Wh[Formula: see text]kg[Formula: see text]. However, the low conductivity of electrode materials, large volume expansion rate and shuttle effect, rapid decline of battery capacity and low cycle lifetime have restricted the commercialization of LIBs. In this paper, a type of silver-coated Co@NC porous carbon (ZIF-67 derivatives) is used as the principal material of the lithium-sulfur battery cathode (denoted Ag–Co@NC). These composites not only confine the active materials to the ordered pore structure composites but also inhibit the free migration of polysulfide and improve the redox reaction. Furthermore, uniformly modified silver nanoparticles are beneficial for enhancing the conductivity of Li2S, thus exhibiting good rate performance and capacity and effectively improving the electrochemical performance of the material.


Sign in / Sign up

Export Citation Format

Share Document