The recent advances in K2S2O8-mediated cyclization/coupling reactions via an oxidative transformation

2020 ◽  
Vol 56 (96) ◽  
pp. 15101-15117
Author(s):  
Sumit Kumar ◽  
Kishor Padala

Recently the K2S2O8 mediated cyclization/coupling reactions to construct carbon–carbon/carbon–heteroatom bond via oxidative transformation is became much interesting in organic synthesis.

2020 ◽  
Vol 24 (17) ◽  
pp. 1897-1942
Author(s):  
Ran An ◽  
Mengbi Guo ◽  
Yingbo Zang ◽  
Hang Xu ◽  
Zhuang Hou ◽  
...  

Imines, versatile intermediates for organic synthesis, can be exploited for the preparation of diverse classes of biologically active benzazoles. Because of the special characteristics of the C=N bond, imines can be simultaneously used in the synthesis of 1,3-benzazoles and 1,2-benzazoles. With the development of imine synthesis, a variety of novel cascade reactions for benzazole synthesis have been reported in the last decade. Therefore, there is a strong need to elucidate the recent progress in the formation of various classes of benzazoles, including benzimidazoles, benzoxazoles, benzothiazoles, indazoles, and benzisoxazoles, via imines obtained by condensation reactions or oxidative/ redox coupling reactions


Catalysts ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 296 ◽  
Author(s):  
Janwa El-Maiss ◽  
Tharwat Mohy El Dine ◽  
Chung-Shin Lu ◽  
Iyad Karamé ◽  
Ali Kanj ◽  
...  

Boron chemistry has evolved to become one of the most diverse and applied fields in organic synthesis and catalysis. Various valuable reactions such as hydroborylations and Suzuki–Miyaura cross-couplings (SMCs) are now considered as indispensable methods in the synthetic toolbox of researchers in academia and industry. The development of novel sterically- and electronically-demanding C(sp3)–Boron reagents and their subsequent metal-catalyzed cross-couplings attracts strong attention and serves in turn to expedite the wheel of innovative applications of otherwise challenging organic adducts in different fields. This review describes the significant progress in the utilization of classical and novel C(sp3)–B reagents (9-BBN and 9-MeO-9-BBN, trifluoroboronates, alkylboranes, alkylboronic acids, MIDA, etc.) as coupling partners in challenging metal-catalyzed C(sp3)–C(sp2) cross-coupling reactions, such as B-alkyl SMCs after 2001.


Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1078
Author(s):  
Zhenjun Mao ◽  
Haorui Gu ◽  
Xufeng Lin

The Pd/C-catalyzed reactions, including reduction reactions and cross-coupling reactions, play an irreplaceable role in modern organic synthesis. Compared to the homogeneous palladium catalyst system, the heterogeneous Pd/C catalyst system offers an alternative protocol that has particular advantages and applications. Herein, a review on Pd/C-catalyzed reactions is presented. Both the advances in Pd/C-catalyzed methodologies and the application of Pd/C-catalysis in total synthesis are covered in this review.


2020 ◽  
Vol 24 ◽  
Author(s):  
Teng Wang ◽  
Zongrui Liu ◽  
Songlin Wang ◽  
Esmail Vessally

The article has been withdrawn at the request of editor of the journal Current Organic Chemistry: Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused. The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policies-main.php BENTHAM SCIENCE DISCLAIMER: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript, the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.


2012 ◽  
Vol 1 (3) ◽  
pp. 155-163 ◽  
Author(s):  
Maya Shankar Singh

2020 ◽  
Vol 09 ◽  
Author(s):  
C M A Afsina ◽  
Mohan Neetha ◽  
Thaipparambil Aneeja ◽  
Gopinathan Anilkumar

: Furan and its derivatives find wide-spread application as pharmaceuticals, pigments, dyes, brighteners, flavour & fragrance compounds and insecticides. They also exhibit anti-hyperglycemic, analgesic, anti-inflammatory, antibacterial, anti-fungal and anti-tumour activities. Silver catalysts are nowadays commonly used in organic synthesis due to the high oxidation potential and versatile nature of silver complexes. In this review, we summarise the recent advances in the synthesis and applications of furan moiety using silver catalysis and covers literature from 2015-2020.


Synlett ◽  
2020 ◽  
Author(s):  
Margaret R Jones ◽  
Nathan D. Schley

The field of catalytic C-H borylation has grown considerably since its founding, providing a means for the preparation of synthetically versatile organoborane products. While sp2 C-H borylation methods have found widespread and practical use in organic synthesis, the analogous sp3 C-H borylation reaction remains challenging and has seen limited application. Existing catalysts are often hindered by incomplete consumption of the diboron reagent, poor functional group tolerance, harsh reaction conditions, and the need for excess or neat substrate. These challenges acutely affect C-H borylation chemistry of unactivated hydrocarbon substrates, which has lagged in comparison to methods for the C-H borylation of activated compounds. Herein we discuss recent advances in sp3 C-H borylation of undirected substrates in the context of two particular challenges: (1) utilization of the diboron reagent and (2) the need for excess or neat substrate. Our recent work on the application of dipyridylarylmethane ligands in sp3 C-H borylation has allowed us to make contributions in this space and has presented an additional ligand scaffold to supplement traditional phenanthroline ligands.


Synlett ◽  
2021 ◽  
Author(s):  
Ying-Yeung Yeung ◽  
Jonathan Wong

AbstractOrganobromine compounds are extremely useful in organic synthesis. In this perspective, a focused discussion on some recent advancements in C–Br bond-forming reactions is presented.1 Introduction2 Selected Recent Advances2.1 Catalytic Asymmetric Bromopolycyclization of Olefinic Substrates2.2 Catalytic Asymmetric Intermolecular Bromination2.3 Some New Catalysts and Reagents for Bromination2.4 Catalytic Site-Selective Bromination of Aromatic Compounds2.5 sp3 C–H Bromination via Atom Transfer/Cross-Coupling3 Outlook


Sign in / Sign up

Export Citation Format

Share Document