fragrance compounds
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 19)

H-INDEX

25
(FIVE YEARS 1)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 353
Author(s):  
Renata Baranauskienė ◽  
Petras Rimantas Venskutonis

The flowers of Narcissus poeticus are used for the isolation of valuable fragrance substances. So far, as the majority of these substances consist of volatile and sensitive to heat compounds, there is a need of developing effective methods for their recovery. In this study, freeze-dried N. poeticus inflorescences were extracted with pure supercritical CO2 (SFE-CO2) and its mixture with 5% co-solvent ethanol (EtOH) at 40 °C. Extract yields varied from 1.63% (12 MPa) to 3.12% (48 MPa, 5% EtOH). In total, 116 volatile compounds were identified by GC-TOF/MS in the extracts, which were divided into 20 different groups. Benzyl benzoate (9.44–10.22%), benzyl linoleate (1.72–2.17%) and benzyl alcohol (0.18–1.00%) were the major volatiles among aromatic compounds. The amount of the recovered benzyl benzoate in N. poeticus SFE-CO2 extracts varied from 58.98 ± 2.61 (24 MPa) to 91.52 ± 1.36 (48 MPa) mg/kg plant dry weight (pdw). α-Terpineol dominated among oxygenated monoterpenes (1.08–3.42%); its yield was from 9.25 ± 0.63 (12 MPa) to 29.88 ± 1.25 (48 MPa/EtOH) mg/kg pdw. Limonene was the major monoterpene hydrocarbon; (3E)-hexenol and heneicosanol dominated among alcohols and phenols; dihydroactinidiolide and 4,8,12,16-tetramethyl heptadecan-4-olide were the most abundant lactones; heptanal, nonanal, (2E,4E)-decadienal and octadecanal were the most abundant aldehydes. The most important prenol lipids were triterpenoid squalene, from 0.86 ± 0.10 (24 MPa) to 7.73 ± 0.18 (48 MPa/EtOH) mg/kg pdw and D-α-tocopherol, from 1.20 ± 0.04 (12 MPa) to 15.39 ± 0.31 (48 MPa/EtOH) mg/kg pdw. Aliphatic hydrocarbons (waxes) constituted the main part (41.47 to 54.93%) in the extracts; while in case of a 5% EtOH the percentage of alkanes was the lowest. The fraction of waxes may be removed for the separation of higher value fragrance materials. In general, the results obtained are promising for a wider application of SFE-CO2 for the recovery of fragrance substances from N. poeticus flowers.


2021 ◽  
Vol 11 (6-S) ◽  
pp. 100-103
Author(s):  
Sucheta Bidve ◽  
Sanjay Auti

Aromatic plants are a reservoir of secondary metabolites that are responsible for the plants' medicinal efficacy and a major source of aromatic compounds and essential oils.  Now a day, there is a renewed interest in the plant kingdom in the search for novel bioactive and fragrance compounds as demands for herbal products are increasing enormously. In the present study two endemic plants, Pinda concanensis and Heracelum grande from Western Ghats were analyzed for secondary metabolites by using different plant parts (roots, leaves, and seeds) and by using range of solvent from polar to non-polar.  Glycosides, terpenoids, tannins, flavonoids, saponins, steroids, and alkaloids were found in methanolic extracts of Pinda concanensis root, leaf, and seeds and methanolic extracts of seeds of Heracelum grande. While extracts of chloroform and petroleum ether exhibits presence of some of them. Obtained results show the importance of both the plants as an important source of biologically active molecules for pharmaceuticals and cosmetic industries. Keywords: Phytochemical screening, secondary metabolites, biologically active compounds.


Author(s):  
In Jung Kim ◽  
Yannik Brack ◽  
Thomas Bayer ◽  
Uwe T. Bornscheuer

Abstractα-Dioxygenases (α-DOXs) are known as plant enzymes involved in the α-oxidation of fatty acids through which fatty aldehydes, with a high commercial value as flavor and fragrance compounds, are synthesized as products. Currently, little is known about α-DOXs from non-plant organisms. The phylogenic analysis reported here identified a substantial number of α-DOX enzymes across various taxa. Here, we report the functional characterization and Escherichia coli whole-cell application of two novel α-DOXs identified from cyanobacteria: CalDOX from Calothrix parietina and LepDOX from Leptolyngbya sp. The catalytic behavior of the recombinantly expressed CalDOX and LepDOX revealed that they are heme-dependent like plant α-DOXs but exhibit activities toward medium carbon fatty acids ranging from C10 to C14 unlike plant α-DOXs. The in-depth molecular investigation of cyanobacterial α-DOXs and their application in an E. coli whole system employed in this study is useful not only for the understanding of the molecular function of α-DOXs, but also for their industrial utilization in fatty aldehyde biosynthesis.Key points• Two novel α-dioxygenases from Cyanobacteria are reported• Both enzymes prefer medium-chain fatty acids• Both enzymes are useful for fatty aldehyde biosynthesis Graphical abstract


Separations ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 122
Author(s):  
Liubei Meng ◽  
Rui Shi ◽  
Qiong Wang ◽  
Shu Wang

In order to better understand the floral fragrance compounds of Chimonanthus praecox belonging to genus Chimonanthus of Chimonanaceae in Yunnan, headspace solid-phase microextraction combined with gas chromatography-mass spectrometry was used to analyze these compounds from four C. praecox plants with different floral colors. Thirty-one types of floral fragrance compounds were identified, among which terpenes, alcohols, esters, phenols, and heterocyclic compounds were the main compounds. Interestingly, the floral fragrance compounds identified in the flowers of C. praecox var. concolor included benzyl acetate, α-ocimene, eugenol, indole, and benzyl alcohol. By contrast, the floral fragrance compounds β-ocimene, α-ocimene, and trans-β-ocimene were detected in C. praecox var. patens. Cluster analysis showed that C. praecox var. concolor H1, H2, and C. praecox var. patens H4 were clustered in one group, but C. praecox var. patens H3 was individually clustered in the other group. Additionally, principal component analysis showed that α-ocimene, benzyl alcohol, benzyl acetate, cinnamyl acetate, eugenol, and indole were the main floral fragrance compounds that could distinguish the four C. praecox with different floral colors in Yunnan. This study provides a theoretical basis for further elucidating the mechanism and pathway of the floral fragrance release of C. praecox.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11620
Author(s):  
Zhen-peng Kai ◽  
Yanwei Qiu ◽  
Xue-wei Zhang ◽  
Shan-shan Chen

Due to the contamination and biological toxicity of some fragrance compounds, the environmental and ecological problems of such compounds have attracted more and more attention. However, studies of the toxicity of fragrance compounds for insects have been limited. The toxicity of 48 fragrance compounds for the silkworm Bombyx mori were investigated in this study. All of the fragrance compounds examined had no acute toxicity for B. mori larvae, but eight of them (menthol, maltol, musk xylene, musk tibeten, dibutyl sulfide, nerolidol, ethyl vanillin, and α-amylcinnamaldehyde) exhibited chronic and lethal toxicity with LC50 values from 20 to 120 µM. In a long-term feeding study, musk tibeten, nerolidol, and musk xylene showed significant growth regulatory activity. They were also extremely harmful to the cocooning of B. mori, resulting in small, thin, and loose cocoons. Two important insect hormones, namely, juvenile hormone (JH) and 20-hydroxyecdysone (20-E), were quantified in hemolymph following chronic exposure to musk tibeten, nerolidol, and musk xylene, respectively. Musk tibeten significantly increased JH titer and decreased the 20-E titer in hemolymph, and musk xylene had a significant inhibitory effect on JH titer and increased 20-E titer. Although nerolidol had no effect on hormone levels, exogenous JH mimic nerolidol increased the physiological effects of JH and significantly slowed the growth rate of B. mori larvae. The results showed that these fragrance compounds could interfere with the insect endocrine system, leading to death and abnormal growth. The risk to insects of residual fragrance compounds in the environment is worthy of attention.


Fermentation ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 26
Author(s):  
Pieter De Brabander ◽  
Evelien Uitterhaegen ◽  
Ellen Verhoeven ◽  
Cedric Vander Cruyssen ◽  
Karel De Winter ◽  
...  

In situ product recovery (ISPR), in the form of an extractive fermentation process, can increase productivity and product titers in the sustainable production of platform chemicals. To establish a guideline for the development of industrially relevant production processes for such bio-based compounds, a wide screening was performed, mapping the potential of an extensive range of solvents and solvent mixtures. Besides solvent biocompatibility with Saccharomyces cerevisiae, distribution coefficients of three organic acids (protocatechuic acid, adipic acid and para-aminobenzoic acid) and four fragrance compounds (2-phenylethanol, geraniol, trans-cinnamaldehyde and β-ionone) were determined. While for highly hydrophobic fragrance compounds, multiple pure solvents were identified that were able to extract more than 98%, reactive extraction mixtures were proven effective for more challenging compounds including organic acids and hydrophilic alcohols. For example, a reactive mixture consisting of 12.5% of the extractant CYTOP 503 in canola oil was found to be biocompatible and showed superior extraction efficiency for the challenging compounds as compared to any biocompatible single solvent. This mapping of biocompatible solvents and solvent mixtures for the extraction of various classes of industrial platform chemicals can be a tremendous step forward in the development of extractive fermentations.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 666
Author(s):  
Jugreet B. Sharmeen ◽  
Fawzi M. Mahomoodally ◽  
Gokhan Zengin ◽  
Filippo Maggi

Fragrance is an integral part of cosmetic products and is often regarded as an overriding factor in the selection of cosmetics among consumers. Fragrances also play a considerable role in masking undesirable smells arising from fatty acids, oils and surfactants that are commonly used in cosmetic formulations. Essential oils are vital assets in the cosmetic industry, as along with imparting pleasant aromas in different products, they are able to act as preservatives and active agents and, simultaneously, offer various benefits to the skin. Moreover, the stimulating demand for natural ingredients has contributed massively to a renewed interest in cosmetic and wellness industries in plant derivatives, especially essential oils. This has led popular cosmetic companies to endorse natural fragrances and opt for minimally processed natural ingredients, given the potentially adverse health risks associated with artificial fragrance chemicals, which are major elements of cosmetics. Among the high-valued essential oils used as fragrances are citrus, lavender, eucalyptus, tea tree and other floral oils, among others, while linalool, geraniol, limonene, citronellol, and citral are much-appreciated fragrance components used in different cosmetics. Thus, this review aimed to highlight the enormous versatility of essential oils as significant sources of natural fragrances in cosmetics and cosmeceuticals. Moreover, a special focus will be laid on the different aspects related to essential oils such as their sources, market demand, chemistry, fragrance classification, aroma profile, authenticity and safety.


2021 ◽  
Author(s):  
◽  
Laura Drummond

Terpenes are one of the largest and most diverse class of natural products, produced by organisms from all kingdoms of life and with important applications in the pharma, flavor and fragrance industries. Well-known examples of terpenes are the pharmaceuticals artemisinin and taxol, the flavor and fragrance compounds menthol, santalol and sclareol, the structural material polyisoprene and the biofuel precursor farnesene. The methods and results presented in this work offer a variety of ways to modify terpene precursors for the creation of new terpene molecules. The application of these methodologies in well-established production systems could lead to the production of new substances, with applications in the industrial fields of pharmaceuticals, flavors and fragrances, and biofuels.


Sign in / Sign up

Export Citation Format

Share Document