Electronic properties and enhanced photocatalytic performance of van der Waals heterostructures of ZnO and Janus transition metal dichalcogenides

2020 ◽  
Vol 22 (18) ◽  
pp. 10351-10359 ◽  
Author(s):  
M. Idrees ◽  
H. U. Din ◽  
Shafiq Ur Rehman ◽  
M. Shafiq ◽  
Yasir Saeed ◽  
...  

Vertical stacking of two-dimensional materials into layered van der Waals heterostructures has recently been considered as a promising candidate for photocatalytic and optoelectronic devices because it can combine the advantages of the individual 2D materials.

2021 ◽  
Author(s):  
Mubashir A. Kharadi ◽  
Gul Faroz A. Malik ◽  
Farooq A. Khanday

2D materials like transition metal dichalcogenides, black phosphorous, silicene, graphene are at the forefront of being the most potent 2D materials for optoelectronic applications because of their exceptional properties. Several application-specific photodetectors based on 2D materials have been designed and manufactured due to a wide range and layer-dependent bandgaps. Different 2D materials stacked together give rise to many surprising electronic and optoelectronic phenomena of the junctions based on 2D materials. This has resulted in a lot of popularity of 2D heterostructures as compared to the original 2D materials. This chapter presents the progress of optoelectronic devices (photodetectors) based on 2D materials and their heterostructures.


2021 ◽  
Author(s):  
Arunima Singh ◽  
Manjari Jain ◽  
Saswata Bhattacharya

Two-dimensional (2D) materials viz. transition metal dichalcogenides (TMD) and transition metal oxides (TMO) offer a platform that allows creation of heterostructures with a variety of properties. The optoelectronic industry has...


2020 ◽  
Vol 2 (2) ◽  
pp. 44

Two-dimensional (2D) materials, the thinnest form of materials to ever occur in nature, have the potential to dramatically alter and revolutionize our material world. After the discovery of graphene, the most prominent representative of this class of materials, many other 2D crystals have been identified. Even if individual 2D materials own various interesting and unexpected properties, the stacking of such layers leads to ‘artificial vdW solids’ called van der Waals heterostructures (vdW HSs) that result in the emergence of new states of matter with novel functionalities. The vdW HSs not only depend on the combination of different 2D crystal but also on their rotational alignment opening the avenue for a new field called twistronics. Coupling between the two layers depends on the stacking angle, which can be used as an external degree of freedom to tune their optical and electronic properties. Apart from excitonic ground states, 2D transition metal dichalcogenides (TMDs) and their heterostructures offer an excellent platform to explore fascinating higher-order excitations such as trion, biexciton, interlayer exciton, hybrid exciton, moiré exciton, and so on. The emergence of these higher-order excitations mostly depends on the symmetry, temperature, and the band alignment of the heterobilayer systems.


2018 ◽  
Vol 6 (11) ◽  
pp. 2830-2839 ◽  
Author(s):  
Gul Rehman ◽  
S. A. Khan ◽  
B. Amin ◽  
Iftikhar Ahmad ◽  
Li-Yong Gan ◽  
...  

Based on (hybrid) first-principles calculations, material properties (structural, electronic, vibrational, optical, and photocatalytic) of van der Waals heterostructures and their corresponding monolayers (transition metal dichalcogenides and MXenes) are investigated.


2020 ◽  
Vol 22 (25) ◽  
pp. 14088-14098
Author(s):  
Amine Slassi ◽  
David Cornil ◽  
Jérôme Cornil

The rise of van der Waals hetero-structures based on transition metal dichalcogenides (TMDs) opens the door to a new generation of optoelectronic devices.


RSC Advances ◽  
2020 ◽  
Vol 10 (51) ◽  
pp. 30529-30602 ◽  
Author(s):  
Hari Singh Nalwa

Two-dimensional transition metal dichalcogenides have attracted much attention in the field of optoelectronics due to their tunable bandgaps, strong interaction with light and tremendous capability for developing diverse van der Waals heterostructures with other nanomaterials.


2019 ◽  
Vol 21 (39) ◽  
pp. 22140-22148 ◽  
Author(s):  
Tuan V. Vu ◽  
Nguyen V. Hieu ◽  
Le T. P. Thao ◽  
Nguyen N. Hieu ◽  
Huynh V. Phuc ◽  
...  

van der Waals heterostructures by stacking different two-dimensional materials are being considered as potential materials for nanoelectronic and optoelectronic devices because they can show the most potential advantages of individual 2D materials.


Sign in / Sign up

Export Citation Format

Share Document