scholarly journals Saturation profile based conformality analysis for atomic layer deposition: aluminum oxide in lateral high-aspect-ratio channels

2020 ◽  
Vol 22 (40) ◽  
pp. 23107-23120
Author(s):  
Jihong Yim ◽  
Oili M. E. Ylivaara ◽  
Markku Ylilammi ◽  
Virpi Korpelainen ◽  
Eero Haimi ◽  
...  

Thin films by atomic layer deposition (ALD) raise global interest through unparalleled conformality. Saturation profiles of the archetypical trimethylaluminum-water ALD process in narrow rectangular channels create a benchmark for future studies.


2020 ◽  
Author(s):  
Jihong Yim ◽  
Oili Ylivaara ◽  
Markku Ylilammi ◽  
Virpi Korpelainen ◽  
Eero Haimi ◽  
...  

<p>ABSTRACT: Atomic layer deposition (ALD) raises global interest through its unparalleled conformality. This work describes new microscopic lateral high-aspect-ratio (LHAR) test structures for conformality analysis of ALD. The LHAR structures are made of silicon and consist of rectangular channels supported by pillars. Extreme aspect ratios even beyond 10 000:1 enable investigations where the adsorption front does not penetrate to the end of the channel, thus exposing the saturation profile for detailed analysis. We use the archetypical trimethylaluminum (TMA)-water ALD process to grow alumina as a test vehicle to demonstrate the applicability, repeatability and reproducibility of the saturation profile measurement and to provide a benchmark for future saturation profile studies. Through varying the TMA reaction and purge times, we obtained new information on the surface chemistry characteristics and the chemisorption kinetics of this widely studied ALD process. We propose new saturation profile related classifications and terminology. </p>



Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 24
Author(s):  
Marion Duparc ◽  
Henrik Hovde Sønsteby ◽  
Ola Nilsen ◽  
Anja Olafsen Sjåstad ◽  
Helmer Fjellvåg

Thin films of the catalytically interesting ternary and quaternary perovskites GdCoO3 and Gd0.9Ca0.1CoO3 are fabricated by atomic layer deposition using metal β-diketonates and ozone as precursors. The resulting thin films are amorphous as deposited and become single-oriented crystalline on LaAlO3(100) and YAlO3(100/010) after post-annealing at 650 °C in air. The crystal orientations of the films are tunable by choice and the orientation of the substrate, mitigated through the interface via solid face epitaxy upon annealing. The films exhibit no sign of Co2+. Additionally, high-aspect-ratio Si(100) substrates were used to document the suitability of the developed process for the preparation of coatings on more complex, high-surface-area structures. We believe that coatings of GdCoO3 and Gd1−xCaxCoO3 may find applications within oxidation catalysis.



2020 ◽  
Author(s):  
Jihong Yim ◽  
Oili Ylivaara ◽  
Markku Ylilammi ◽  
Virpi Korpelainen ◽  
Eero Haimi ◽  
...  

<p>ABSTRACT: Atomic layer deposition (ALD) raises global interest through its unparalleled conformality. This work describes new microscopic lateral high-aspect-ratio (LHAR) test structures for conformality analysis of ALD. The LHAR structures are made of silicon and consist of rectangular channels supported by pillars. Extreme aspect ratios even beyond 10 000:1 enable investigations where the adsorption front does not penetrate to the end of the channel, thus exposing the saturation profile for detailed analysis. We use the archetypical trimethylaluminum (TMA)-water ALD process to grow alumina as a test vehicle to demonstrate the applicability, repeatability and reproducibility of the saturation profile measurement and to provide a benchmark for future saturation profile studies. Through varying the TMA reaction and purge times, we obtained new information on the surface chemistry characteristics and the chemisorption kinetics of this widely studied ALD process. We propose new saturation profile related classifications and terminology. </p>



2020 ◽  
Author(s):  
Jihong Yim ◽  
Oili Ylivaara ◽  
Markku Ylilammi ◽  
Virpi Korpelainen ◽  
Eero Haimi ◽  
...  

<p>ABSTRACT: Atomic layer deposition (ALD) raises global interest through its unparalleled conformality. This work describes new microscopic lateral high-aspect-ratio (LHAR) test structures for conformality analysis of ALD. The LHAR structures are made of silicon and consist of rectangular channels supported by pillars. Extreme aspect ratios even beyond 10 000:1 enable investigations where the adsorption front does not penetrate to the end of the channel, thus exposing the saturation profile for detailed analysis. We use the archetypical trimethylaluminum (TMA)-water ALD process to grow alumina as a test vehicle to demonstrate the applicability, repeatability and reproducibility of the saturation profile measurement and to provide a benchmark for future saturation profile studies. Through varying the TMA reaction and purge times, we obtained new information on the surface chemistry characteristics and the chemisorption kinetics of this widely studied ALD process. We propose new saturation profile related classifications and terminology. </p>



2020 ◽  
Author(s):  
Jihong Yim ◽  
Oili Ylivaara ◽  
Markku Ylilammi ◽  
Virpi Korpelainen ◽  
Eero Haimi ◽  
...  

<p>ABSTRACT: Atomic layer deposition (ALD) raises global interest through its unparalleled conformality. This work describes new microscopic lateral high-aspect-ratio (LHAR) test structures for conformality analysis of ALD. The LHAR structures are made of silicon and consist of rectangular channels supported by pillars. Extreme aspect ratios even beyond 10 000:1 enable investigations where the adsorption front does not penetrate to the end of the channel, thus exposing the saturation profile for detailed analysis. We use the archetypical trimethylaluminum (TMA)-water ALD process to grow alumina as a test vehicle to demonstrate the applicability, repeatability and reproducibility of the saturation profile measurement and to provide a benchmark for future saturation profile studies. Through varying the TMA reaction and purge times, we obtained new information on the surface chemistry characteristics and the chemisorption kinetics of this widely studied ALD process. We propose new saturation profile related classifications and terminology. </p>



2020 ◽  
Author(s):  
Jihong Yim ◽  
Oili Ylivaara ◽  
Markku Ylilammi ◽  
Virpi Korpelainen ◽  
Eero Haimi ◽  
...  

<p>ABSTRACT: Atomic layer deposition (ALD) raises global interest through its unparalleled conformality. This work describes new microscopic lateral high-aspect-ratio (LHAR) test structures for conformality analysis of ALD. The LHAR structures are made of silicon and consist of rectangular channels supported by pillars. Extreme aspect ratios even beyond 10 000:1 enable investigations where the adsorption front does not penetrate to the end of the channel, thus exposing the saturation profile for detailed analysis. We use the archetypical trimethylaluminum (TMA)-water ALD process to grow alumina as a test vehicle to demonstrate the applicability, repeatability and reproducibility of the saturation profile measurement and to provide a benchmark for future saturation profile studies. Through varying the TMA reaction and purge times, we obtained new information on the surface chemistry characteristics and the chemisorption kinetics of this widely studied ALD process. We propose new saturation profile related classifications and terminology. </p>



2011 ◽  
Vol 17 (4-6) ◽  
pp. 135-140 ◽  
Author(s):  
Madeleine Diskus ◽  
Ola Nilsen ◽  
Helmer Fjellvåg


2018 ◽  
Vol 123 (20) ◽  
pp. 205301 ◽  
Author(s):  
Markku Ylilammi ◽  
Oili M. E. Ylivaara ◽  
Riikka L. Puurunen


Author(s):  
Andrew J. Gayle ◽  
Zachary J. Berquist ◽  
Yuxin Chen ◽  
Alexander J. Hill ◽  
Jacob Y. Hoffman ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document