scholarly journals Entanglement via rotational blockade of MgF molecules in a magic potential

Author(s):  
Eunmi Chae

Rotations of MgF molecules can be entangled via strong dipole–dipole interactions when trapped in optical tweezers with a magic polarization angle.

2019 ◽  
Vol 52 (10) ◽  
pp. 3601-3611 ◽  
Author(s):  
Man-Hin Kwok ◽  
Bryan T. Seymour ◽  
Ruipeng Li ◽  
Morton H. Litt ◽  
Bin Zhao ◽  
...  

2015 ◽  
Vol 3 (34) ◽  
pp. 17704-17712 ◽  
Author(s):  
Daobin Yang ◽  
Yan Jiao ◽  
Lin Yang ◽  
Yao Chen ◽  
Satoshi Mizoi ◽  
...  

Cyano-substituted asymmetrical squaraines for organic solar cells with a high PCE was synthesized.


2015 ◽  
Vol 112 (50) ◽  
pp. 15291-15296 ◽  
Author(s):  
Yu Xia ◽  
Francesca Serra ◽  
Randall D. Kamien ◽  
Kathleen J. Stebe ◽  
Shu Yang

Liquid crystals (LCs), owing to their anisotropy in molecular ordering, are of wide interest in both the display industry and soft matter as a route to more sophisticated optical objects, to direct phase separation, and to facilitate colloidal assemblies. However, it remains challenging to directly probe the molecular-scale organization of nonglassy nematic LC molecules without altering the LC directors. We design and synthesize a new type of nematic liquid crystal monomer (LCM) system with strong dipole–dipole interactions, resulting in a stable nematic phase and strong homeotropic anchoring on silica surfaces. Upon photopolymerization, the director field can be faithfully “locked,” allowing for direct visualization of the LC director field and defect structures by scanning electron microscopy (SEM) in real space with 100-nm resolution. Using this technique, we study the nematic textures in more complex LC/colloidal systems and calculate the extrapolation length of the LCM.


2020 ◽  
Vol 75 (1-2) ◽  
pp. 173-181
Author(s):  
Eric Sperlich ◽  
Martin Köckerling

AbstractThree new niobium cluster compounds with edge bridged, octahedral hexanuclear metal cores have been synthesised. They consist of cluster pairs with [Nb6Cl12(RCN)6]2+ cations, [Nb6Cl18]2− anions, and co-crystallised nitrile molecules, with R = C2H5 (propionitrile), nC3H7 (butyronitrile), iC3H7 (isobutyronitrile). The synthesis is based on the dehydration of [Nb6Cl14(H2O)4] · 4(H2O) with carboxylic acid anhydrides in the presences of an excess of the respective nitrile. An interesting aspect of these compounds is that the metal atoms of the cluster cation have an average oxidation state different from that of the cluster anion, the former being oxidized losing two electrons. In crystals of all three compounds layers of cluster cations are separated by layers of cluster anions. Perpendicular to these layers of the same cluster types, every cation is surrounded by four anions and vice versa. Between the cations and anions short distances are found between the halogenido ligands and the positively charged C atoms of the nitrile ligands (N–C · · · Cl angles of ~90°). These contacts indicate relatively strong dipole-dipole interactions, which presumably contribute to the arrangement of the cluster ions in the crystals.


2018 ◽  
Vol 19 (9) ◽  
pp. 2715 ◽  
Author(s):  
Takuma Nozawa ◽  
Paul Brumby ◽  
Kenji Yasuoka

Monte Carlo simulations of chiral liquid-crystals, represented by a simple coarse-grained chiral Gay–Berne model, were performed to investigate the effect of central longitudinal dipole interactions on phase behavior. A systematic analysis of the structural properties and phase behavior of both achiral and chiral systems, with dipole interactions, reveals differing effects; strong dipole interactions enhance the formation of layered structures; however, chiral interactions may prevent the formation of such phases under certain conditions. We also observed a short-ranged smectic structure within the cholesteric phases with strong dipole interactions. This constitutes possible evidence of presmectic ordering and/or the existence of chiral line liquid phases, which have previously been observed in X-ray experiments to occur between the smectic twisted grain boundary and cholesteric phases. These results provide a systematic understanding of how the phase behavior of chiral liquid-crystals changes when alterations are made to the strength of dipole interactions.


Author(s):  
Lauro Tomio ◽  
Ramavarmaraja Kishor Kumar ◽  
Arnaldo Gammal

By considering symmetric- and asymmetric-dipolar coupled mixtures (with dysprosium and erbium isotopes), we report a study on relevant anisotropic effects, related to spatial separation and miscibility, due to dipole-dipole interactions (DDIs) in rotating binary dipolar Bose-Einstein condensates. The binary mixtures are kept in strong pancake-like traps, with repulsive two-body interactions modeled by an effective two-dimensional (2D) coupled Gross-Pitaevskii equation. The DDI are tuned from repulsive to attractive by varying the dipole polarization angle. A clear spatial separation is verified in the densities for attractive DDIs, being angular for symmetric mixtures and radial for asymmetric ones. Also relevant is the mass-imbalance sensibility observed by the vortex-patterns in symmetric- and asymmetric-dipolar mixtures. In an extension of this study, here we show how the rotational properties and spatial separation of these dipolar mixture are affected by a quartic term added to the harmonic trap of one of the components.


2004 ◽  
Vol 51 (3) ◽  
pp. 409-414 ◽  
Author(s):  
P. Jordan ◽  
J. Leach ◽  
M. J. Padgett ◽  
J. Cooper ◽  
G. Sinclair
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document