Can modified DNA base pairs with chalcogen bonding expand the genetic alphabet? A combined quantum chemical and molecular dynamics simulation study

2020 ◽  
Vol 22 (41) ◽  
pp. 23754-23765
Author(s):  
Karan Deep Sharma ◽  
Preetleen Kathuria ◽  
Stacey D. Wetmore ◽  
Purshotam Sharma

A comprehesive computational study is presented with the goal to design and analyze model chalcogen-bonded modified nucleobase pairs that replace one or two Watson–Crick hydrogen bonds of the canonical A:T or G:C pair with chalcogen bond(s).

2012 ◽  
Vol 998 ◽  
pp. 57-63 ◽  
Author(s):  
Jordi Poater ◽  
Marcel Swart ◽  
Célia Fonseca Guerra ◽  
F. Matthias Bickelhaupt

Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 709
Author(s):  
Dakshinamurthy Sivakumar ◽  
Sathish-Kumar Mudedla ◽  
Seonghun Jang ◽  
Hyunjun Kim ◽  
Hyunjin Park ◽  
...  

PDE9 inhibitors have been studied to validate their potential to treat diabetes, neurodegenerative disorders, cardiovascular diseases, and erectile dysfunction. In this report, we have selected highly potent previously reported selective PDE9 inhibitors BAY73-6691R, BAY73-6691S, 28r, 28s, 3r, 3s, PF-0447943, PF-4181366, and 4r to elucidate the differences in their interaction patterns in the presence of different metal systems such as Zn/Mg, Mg/Mg, and Zn/Zn. The initial complexes were generated by molecular docking followed by molecular dynamics simulation for 100 ns in triplicate for each system to understand the interactions’ stability. The results were carefully analyzed, focusing on the ligands’ non-bonded interactions with PDE9 in different metal systems.


2017 ◽  
Vol 41 (20) ◽  
pp. 12104-12109 ◽  
Author(s):  
Yulei Shi ◽  
Wanrun Jiang ◽  
Zhiyuan Zhang ◽  
Zhigang Wang

For the AT pair, Symst and Strech peaks further shift toward the red, giving the H-bonds an amplified effect (orange arrows).


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11171
Author(s):  
Neha Srivastava ◽  
Prekshi Garg ◽  
Prachi Srivastava ◽  
Prahlad Kishore Seth

Background & Objectives The massive outbreak of Novel Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) has turned out to be a serious global health issue worldwide. Currently, no drugs or vaccines are available for the treatment of COVID-19. The current computational study was attempted to identify a novel therapeutic inhibitor against novel SARS-CoV-2 using in silico drug discovery pipeline. Methods In the present study, the human angiotensin-converting enzyme 2 (ACE2) receptor was the target for the designing of drugs against the deadly virus. The 3D structure of the receptor was modeled & validated using a Swiss-model, Procheck & Errat server. A molecular docking study was performed between a group of natural & synthetic compounds having proven anti-viral activity with ACE2 receptor using Autodock tool 1.5.6. The molecular dynamics simulation study was performed using Desmond v 12 to evaluate the stability and interaction of the ACE2 receptor with a ligand. Results Based on the lowest binding energy, confirmation, and H-bond interaction, cinnamic acid (−5.20 kcal/mol), thymoquinone (−4.71 kcal/mol), and andrographolide (Kalmegh) (−4.00 kcal/mol) were screened out showing strong binding affinity to the active site of ACE2 receptor. MD simulations suggest that cinnamic acid, thymoquinone, and andrographolide (Kalmegh) could efficiently activate the biological pathway without changing the conformation in the binding site of the ACE2 receptor. The bioactivity and drug-likeness properties of compounds show their better pharmacological property and safer to use. Interpretation & Conclusions The study concludes the high potential of cinnamic acid, thymoquinone, and andrographolide against the SARS-CoV-2 ACE2 receptor protein. Thus, the molecular docking and MD simulation study will aid in understanding the molecular interaction between ligand and receptor binding site, thereby leading to novel therapeutic intervention.


Sign in / Sign up

Export Citation Format

Share Document