Metal–organic frameworks as catalytic selectivity regulators for organic transformations

2021 ◽  
Author(s):  
Jun Guo ◽  
Yutian Qin ◽  
Yanfei Zhu ◽  
Xiaofei Zhang ◽  
Chang Long ◽  
...  

Selective organic transformations using metal–organic frameworks (MOFs) and MOF-based heterogeneous catalysts have been an intriguing but challenging research topic in both the chemistry and materials communities.

2021 ◽  
Vol 9 ◽  
Author(s):  
Kranthi Kumar Gangu ◽  
Sreekantha B. Jonnalagadda

Metal-organic frameworks (MOFs) have emerged as versatile candidates of interest in heterogeneous catalysis. Recent research and developments with MOFs positively endorse their role as catalysts in generating invaluable organic compounds. To harness the full potential of MOFs in value-added organic transformation, a comprehensive look at how these materials are likely to involve in the catalytic processes is essential. Mainstays of MOFs such as metal nodes, linkers, encapsulation materials, and enveloped structures tend to produce capable catalytic active sites that offer solutions to reduce human efforts in developing new organic reactions. The main advantages of choosing MOFs as reusable catalysts are the flexible and robust skeleton, regular porosity, high pore volume, and accessible synthesis accompanied with cost-effectiveness. As hosts for active metals, sole MOFs, modified MOFs, and MOFs have made remarkable advances as solid catalysts. The extensive exploration of the MOFs possibly led to their fast adoption in fabricating new biological molecules such as pyridines, quinolines, quinazolinones, imines, and their derivatives. This review covers the varied MOFs and their catalytic properties in facilitating the selective formation of the product organic moieties and interprets MOF’s property responsible for their elegant performance.


2015 ◽  
Vol 44 (19) ◽  
pp. 6804-6849 ◽  
Author(s):  
Adeel H. Chughtai ◽  
Nazir Ahmad ◽  
Hussein A. Younus ◽  
A. Laypkov ◽  
Francis Verpoort

Novel catalytic materials are highly demanded to perform a variety of catalytic organic reactions.


ChemInform ◽  
2015 ◽  
Vol 46 (46) ◽  
pp. no-no
Author(s):  
Adeel H. Chughtai ◽  
Nazir Ahmad ◽  
Hussein A. Younus ◽  
A. Laypkov ◽  
Francis Verpoort

2020 ◽  
Vol 24 (16) ◽  
pp. 1876-1891
Author(s):  
Qiuyun Zhang ◽  
Yutao Zhang ◽  
Jingsong Cheng ◽  
Hu Li ◽  
Peihua Ma

Biofuel synthesis is of great significance for producing alternative fuels. Among the developed catalytic materials, the metal-organic framework-based hybrids used as acidic, basic, or supported catalysts play major roles in the biodiesel production. This paper presents a timely and comprehensive review of recent developments on the design and preparation of metal-organic frameworks-based catalysts used for biodiesel synthesis from various oil feedstocks, including MILs-based catalysts, ZIFs-based catalysts, UiO-based catalysts, Cu-BTC-based catalysts, and MOFs-derived porous catalysts. Due to their unique and flexible structures, excellent thermal and hydrothermal stability, and tunable host-guest interactions, as compared with other heterogeneous catalysts, metal-organic framework-based catalysts have good opportunities for application in the production of biodiesel at industrial scale.


Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 15
Author(s):  
Cheng-An Tao ◽  
Jian-Fang Wang

Metal-organic frameworks (MOFs) have been used in adsorption, separation, catalysis, sensing, photo/electro/magnetics, and biomedical fields because of their unique periodic pore structure and excellent properties and have become a hot research topic in recent years. Ball milling is a method of small pollution, short time-consumption, and large-scale synthesis of MOFs. In recent years, many important advances have been made. In this paper, the influencing factors of MOFs synthesized by grinding were reviewed systematically from four aspects: auxiliary additives, metal sources, organic linkers, and reaction specific conditions (such as frequency, reaction time, and mass ratio of ball and raw materials). The prospect for the future development of the synthesis of MOFs by grinding was proposed.


2021 ◽  
Author(s):  
Panyapat Ponchai ◽  
Kanyaporn Adpakpang ◽  
Sareeya Bureekaew

Utilization of metal-organic frameworks as heterogeneous catalysts is crucial owing to their abundant catalytic sites and well-defined porous structures. Highly robust [Cu3(trz)3(μ3-OH)(OH)2(H2O)4]∙2H2O (trz = 1,2,4-triazole) was employed as a catalyst...


2018 ◽  
Vol 19 (2) ◽  
pp. 976-982 ◽  
Author(s):  
Kuan Gao ◽  
Chao Huang ◽  
Yisen Yang ◽  
Hong Li ◽  
Jie Wu ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (41) ◽  
pp. 32795-32803 ◽  
Author(s):  
Kai Huang ◽  
Yang Xu ◽  
Lianguang Wang ◽  
Dongfang Wu

Two different porous copper metal–organic frameworks (Cu-MOFs) named as Cu3(BTC)2 and Cu(BDC) were synthesized and applied as heterogeneous catalysts for the catalytic wet peroxide oxidation (CWPO) of simulated phenol wastewater (100 mg L−1).


Sign in / Sign up

Export Citation Format

Share Document