scholarly journals Self-discharge of magnesium–sulfur batteries leads to active material loss and poor shelf life

2021 ◽  
Vol 14 (2) ◽  
pp. 890-899
Author(s):  
Hunter O. Ford ◽  
Emily S. Doyle ◽  
Peng He ◽  
William C. Boggess ◽  
Allen G. Oliver ◽  
...  

The magnesium–sulfur battery holds great promise for energy storage due to its high energy density and low cost of materials. Unfortunately, current Mg–S electrolytes are found to enable severe self-discharge, leading to poor battery shelf-life.

2015 ◽  
Vol 27 (39) ◽  
pp. 5915-5922 ◽  
Author(s):  
Xiaochuan Lu ◽  
Mark E. Bowden ◽  
Vincent L. Sprenkle ◽  
Jun Liu

Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 122
Author(s):  
Renwei Lu ◽  
Xiaolong Ren ◽  
Chong Wang ◽  
Changzhen Zhan ◽  
Ding Nan ◽  
...  

Lithium-ion hybrid capacitors (LICs) are regarded as one of the most promising next generation energy storage devices. Commercial activated carbon materials with low cost and excellent cycling stability are widely used as cathode materials for LICs, however, their low energy density remains a significant challenge for the practical applications of LICs. Herein, Na0.76V6O15 nanobelts (NaVO) were prepared and combined with commercial activated carbon YP50D to form hybrid cathode materials. Credit to the synergism of its capacitive effect and diffusion-controlled faradaic effect, NaVO/C hybrid cathode displays both superior cyclability and enhanced capacity. LICs were assembled with the as-prepared NaVO/C hybrid cathode and artificial graphite anode which was pre-lithiated. Furthermore, 10-NaVO/C//AG LIC delivers a high energy density of 118.9 Wh kg−1 at a power density of 220.6 W kg−1 and retains 43.7 Wh kg−1 even at a high power density of 21,793.0 W kg−1. The LIC can also maintain long-term cycling stability with capacitance retention of approximately 70% after 5000 cycles at 1 A g−1. Accordingly, hybrid cathodes composed of commercial activated carbon and a small amount of high energy battery-type materials are expected to be a candidate for low-cost advanced LICs with both high energy density and power density.


RSC Advances ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 5432-5443
Author(s):  
Shyam K. Pahari ◽  
Tugba Ceren Gokoglan ◽  
Benjoe Rey B. Visayas ◽  
Jennifer Woehl ◽  
James A. Golen ◽  
...  

With the cost of renewable energy near parity with fossil fuels, energy storage is paramount. We report a breakthrough on a bioinspired NRFB active-material, with greatly improved solubility, and place it in a predictive theoretical framework.


Nanoscale ◽  
2021 ◽  
Author(s):  
Chenxi Gao ◽  
Jiawei Wang ◽  
Yuan Huang ◽  
Zixuan Li ◽  
Jiyan Zhang ◽  
...  

Zinc-ion batteries (ZIBs) have attracted significant attention owing to their high safety, high energy density, and low cost. ZIBs have been studied as a potential energy device for portable and...


2021 ◽  
Vol 415 ◽  
pp. 128509
Author(s):  
Qihang Yu ◽  
Wu Tang ◽  
Yang Hu ◽  
Jian Gao ◽  
Ming Wang ◽  
...  

2020 ◽  
Vol 13 (2) ◽  
pp. 562-570 ◽  
Author(s):  
Nana Wang ◽  
Yunxiao Wang ◽  
Zhongchao Bai ◽  
Zhiwei Fang ◽  
Xiao Zhang ◽  
...  

Developing novel gold nanoclusters as an electrocatalyst can facilitate a completely reversible reaction between S and Na, achieving advanced high-energy-density room-temperature sodium–sulfur batteries.


Sign in / Sign up

Export Citation Format

Share Document