scholarly journals High-performance room-temperature sodium–sulfur battery enabled by electrocatalytic sodium polysulfides full conversion

2020 ◽  
Vol 13 (2) ◽  
pp. 562-570 ◽  
Author(s):  
Nana Wang ◽  
Yunxiao Wang ◽  
Zhongchao Bai ◽  
Zhiwei Fang ◽  
Xiao Zhang ◽  
...  

Developing novel gold nanoclusters as an electrocatalyst can facilitate a completely reversible reaction between S and Na, achieving advanced high-energy-density room-temperature sodium–sulfur batteries.

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1535
Author(s):  
Yanjie Wang ◽  
Yingjie Zhang ◽  
Hongyu Cheng ◽  
Zhicong Ni ◽  
Ying Wang ◽  
...  

Lithium metal batteries have achieved large-scale application, but still have limitations such as poor safety performance and high cost, and limited lithium resources limit the production of lithium batteries. The construction of these devices is also hampered by limited lithium supplies. Therefore, it is particularly important to find alternative metals for lithium replacement. Sodium has the properties of rich in content, low cost and ability to provide high voltage, which makes it an ideal substitute for lithium. Sulfur-based materials have attributes of high energy density, high theoretical specific capacity and are easily oxidized. They may be used as cathodes matched with sodium anodes to form a sodium-sulfur battery. Traditional sodium-sulfur batteries are used at a temperature of about 300 °C. In order to solve problems associated with flammability, explosiveness and energy loss caused by high-temperature use conditions, most research is now focused on the development of room temperature sodium-sulfur batteries. Regardless of safety performance or energy storage performance, room temperature sodium-sulfur batteries have great potential as next-generation secondary batteries. This article summarizes the working principle and existing problems for room temperature sodium-sulfur battery, and summarizes the methods necessary to solve key scientific problems to improve the comprehensive energy storage performance of sodium-sulfur battery from four aspects: cathode, anode, electrolyte and separator.


2019 ◽  
Vol 2 (4) ◽  
pp. 2956-2964 ◽  
Author(s):  
Shuping Li ◽  
Ziqi Zeng ◽  
Jiaqiang Yang ◽  
Zhilong Han ◽  
Wei Hu ◽  
...  

2014 ◽  
Vol 26 (8) ◽  
pp. 1308-1308 ◽  
Author(s):  
Sen Xin ◽  
Ya-Xia Yin ◽  
Yu-Guo Guo ◽  
Li-Jun Wan

2018 ◽  
Vol 160 ◽  
pp. 03003
Author(s):  
Fenglin Zhang ◽  
Luan Chen ◽  
Haotian Chang ◽  
Jianxin Chen ◽  
Zhibin Deng ◽  
...  

Sodium sulfur battery is the only energy storage battery with large capacity and high energy density. It has a great application prospect in the peak load shifting of power grid, due to the lack of domestic research on it, it is urgent to evaluate the effect of grid-connection of sodium sulfur battery scientifically. According to the experimental data of the sodium sulfur battery project, the battery model is built. Compared with the real discharge curve, the error of the model simulation curve is small, so the battery model is effective. The AC / DC power grid model is built, and the rectifier and inverter control circuits are designed to simulate the scenario that the wind turbine and the battery are supplied to the passive load. The simulation results show that the grid-connected model of the sodium sulfur battery under the two control strategies can stabilize the larger frequency fluctuation.


Author(s):  
Chunwei Dong ◽  
HongYu Zhou ◽  
Bo Jin ◽  
Wang Gao ◽  
Xingyou Lang ◽  
...  

Room-temperature sodium/sulfur (RT-Na/S) batteries are of considerable interest for next-generation energy storage systems because of the earth-abundant electrode materials, low cost, and high energy density. However, the widespread application of...


2013 ◽  
Vol 26 (8) ◽  
pp. 1261-1265 ◽  
Author(s):  
Sen Xin ◽  
Ya-Xia Yin ◽  
Yu-Guo Guo ◽  
Li-Jun Wan

2019 ◽  
Author(s):  
Zhao-Yang Zhang ◽  
Tao LI

Solar energy and ambient heat are two inexhaustible energy sources for addressing the global challenge of energy and sustainability. Solar thermal battery based on molecular switches that can store solar energy and release it as heat has recently attracted great interest, but its development is severely limited by both low energy density and short storage stability. On the other hand, the efficient recovery and upgrading of low-grade heat, especially that of the ambient heat, has been a great challenge. Here we report that solar energy and ambient heat can be simultaneously harvested and stored, which is enabled by room-temperature photochemical crystal-to-liquid transitions of small-molecule photoswitches. The two forms of energy are released together to produce high-temperature heat during the reverse photochemical phase change. This strategy, combined with molecular design, provides high energy density of 320-370 J/g and long-term storage stability (half-life of about 3 months). On this basis, we fabricate high-performance, flexible film devices of solar thermal battery, which can be readily recharged at room temperature with good cycling ability, show fast rate of heat release, and produce high-temperature heat that is >20<sup> o</sup>C higher than the ambient temperature. Our work opens up a new avenue to harvest ambient heat, and demonstrate a feasible strategy to develop high-performance solar thermal battery.


Sign in / Sign up

Export Citation Format

Share Document