Photocatalytic reduction of Cr(vi) by graphene oxide materials under sunlight or visible light: the effects of low-molecular-weight chemicals

2020 ◽  
Vol 7 (8) ◽  
pp. 2399-2409
Author(s):  
Shang-Shing Wu ◽  
Wen-Che Hou ◽  
David K. Wang

GO rapidly photocatalyzes the reduction of Cr(vi) utilizing sunlight in the presence of oxalate that acts as an electron donor and chelating agent.

2017 ◽  
Vol 198 ◽  
pp. 397-407 ◽  
Author(s):  
Tomoaki Takayama ◽  
Ko Sato ◽  
Takehiro Fujimura ◽  
Yuki Kojima ◽  
Akihide Iwase ◽  
...  

CuGaS2, (AgInS2)x–(ZnS)2−2x, Ag2ZnGeS4, Ni- or Pb-doped ZnS, (ZnS)0.9–(CuCl)0.1, and ZnGa0.5In1.5S4 showed activities for CO2 reduction to form CO and/or HCOOH in an aqueous solution containing K2SO3 and Na2S as electron donors under visible light irradiation. Among them, CuGaS2 and Ni-doped ZnS photocatalysts showed relatively high activities for CO and HCOOH formation, respectively. CuGaS2 was applied in a powdered Z-scheme system combining with reduced graphene oxide (RGO)-incorporated TiO2 as an O2-evolving photocatalyst. The powdered Z-scheme system produced CO from CO2 in addition to H2 and O2 due to water splitting. Oxygen evolution with an almost stoichiometric amount indicates that water was consumed as an electron donor in the Z-schematic CO2 reduction. Thus, we successfully demonstrated CO2 reduction of artificial photosynthesis using a simple Z-scheme system in which two kinds of photocatalyst powders (CuGaS2 and an RGO–TiO2 composite) were only dispersed in water under 1 atm of CO2.


1979 ◽  
Vol 37 (1) ◽  
pp. 157-167
Author(s):  
A.R. Jaffe ◽  
A.P. Swan ◽  
D.R. Garrod

Axenically grown cells of D. discoideum Ax-2 harvested in the log phase of growth, cohere rapidly when shaken in phosphate buffer. After 3.5 days in the stationary phase of growth, cells become completely non-cohesive. Although they do not stick to each other, stationary phase cells do stick to both log phase cells and aggregation-competent cells. The cohesion of stationary phase cells with these other 2 cell types is inhibited by both EDTA and the low-molecular-weight factor which we have previously demonstrated in stationary-phase growth medium. There is a decline in the sensitivity of slime mould cell cohesion to the low-molecular-weight inhibitory factor as the cells become aggregation-competent. This effect parallels the developmentally-regulated decline in sensitivity to EDTA. The low-molecular-weight inhibitor is not a chelating agent, however. The effect of the inhibitor seems to be specifically against contact sites-B mediated cohesion. We suggest that the simplest cohesive mechanism which can explain our results, is that the EDTA-sensitive cohesion of log phase cells could be dependent on a ligand-receptor system.


2015 ◽  
Vol 17 (3) ◽  
pp. 1605-1609 ◽  
Author(s):  
Pawan Kumar ◽  
Amit Bansiwal ◽  
Nitin Labhsetwar ◽  
Suman L. Jain

A new heteroleptic ruthenium complex containing 2-thiophenyl benzimidazole ligands was synthesized using a microwave technique and was immobilized to graphene oxide via covalent attachment.


Sign in / Sign up

Export Citation Format

Share Document