Emerging investigator series: onsite recycling of saline–alkaline soil washing water by forward osmosis: techno-economic evaluation and implication

2020 ◽  
Vol 6 (10) ◽  
pp. 2881-2890
Author(s):  
Zhicheng Xu ◽  
Ming Xie ◽  
Jung Eun Kim ◽  
Nazmul Huda ◽  
Zideng Gao ◽  
...  

This study investigated the techno-economic feasibility of forward osmosis (FO) for onsite recycling of saline–alkaline soil washing water with an all-purpose liquid fertiliser as a draw solution.

Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2257
Author(s):  
Chenglong Xu ◽  
Jialei Lu ◽  
Zhimiao Zhao ◽  
Yinjiang Zhang ◽  
Jiawei Zhang

An aircathode microbial desalination cell (AMDC) was successfully started by inoculating anaerobic sludge into the anode of a microbial desalination cell and then used to study the effects of salinity on performance of AMDC and effect of treatment of coastal saline-alkaline soil-washing water. The results showed that the desalination cycle and rate gradually shorten, but salt removal gradually increased when the salinity was decreased, and the highest salt removal was 98.00 ± 0.12% at a salinity of 5 g/L. COD removal efficiency was increased with the extension of operation cycle and largest removal efficiency difference was not significant, but the average coulomb efficiency had significant differences under the condition of each salinity. This indicates that salinity conditions have significant influence on salt removal and coulomb efficiency under the combined action of osmotic pressure, electric field action, running time and microbial activity, etc. On the contrary, COD removal effect has no significant differences under the condition of inoculation of the same substrate in the anode chamber. The salt removal reached 99.13 ± 2.1% when the AMDC experiment ended under the condition of washing water of coastal saline-alkaline soil was inserted in the desalination chamber. Under the action of osmotic pressure, ion migration, nitrification and denitrification, NH4+-N and NO3−-N in the washing water of the desalination chamber were removed, and this indicates that the microbial desalination cell can be used to treatment the washing water of coastal saline-alkaline soil. The microbial community and function of the anode electrode biofilm and desalination chamber were analyzed through high-throughput sequencing, and the power generation characteristics, organics degradation and migration and transformation pathways of nitrogen of the aircathode microbial desalination cell were further explained.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yasamin Bide ◽  
Marzieh Arab Fashapoyeh ◽  
Soheila Shokrollahzadeh

AbstractForward osmosis (FO) process has been extensively considered as a potential technology that could minimize the problems of traditional water desalination processes. Finding an appropriate osmotic agent is an important concern in the FO process. For the first time, a nonionic surfactant-based draw solution was introduced using self-assemblies of Tween 80 and choline chloride. The addition of choline chloride to Tween 80 led to micelles formation with an average diameter of 11.03 nm. The 1H NMR spectra exhibited that all groups of Tween 80 were interacted with choline chloride by hydrogen bond and Van der Waals’ force. The influence of adding choline chloride to Tween 80 and the micellization on its osmotic activity was investigated. Despite the less activity of single components, the average water flux of 14.29 L m‒2 h‒1 was obtained using 0.15 M of Tween 80-choline chloride self-assembly as draw solution in the FO process with DI water feed solution. Moreover, various concentrations of NaCl aqueous solutions were examined as feed solution. This report proposed a possible preparation of nonionic surfactant-based draw solutions using choline chloride additive with enhanced osmotic activities that can establish an innovative field of study in water desalination by the FO process.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 588
Author(s):  
Eiji Kamio ◽  
Hiroki Kurisu ◽  
Tomoki Takahashi ◽  
Atsushi Matsuoka ◽  
Tomohisa Yoshioka ◽  
...  

Forward osmosis (FO) membrane process is expected to realize energy-saving seawater desalination. To this end, energy-saving water recovery from a draw solution (DS) and effective DS regeneration are essential. Recently, thermo-responsive DSs have been developed to realize energy-saving water recovery and DS regeneration. We previously reported that high-temperature reverse osmosis (RO) treatment was effective in recovering water from a thermo-responsive ionic liquid (IL)-based DS. In this study, to confirm the advantages of the high-temperature RO operation, thermo-sensitive IL-based DS was treated by an RO membrane at temperatures higher than the lower critical solution temperature (LCST) of the DS. Tetrabutylammonium 2,4,6-trimethylbenznenesulfonate ([N4444][TMBS]) with an LCST of 58 °C was used as the DS. The high-temperature RO treatment was conducted at 60 °C above the LCST using the [N4444][TMBS]-based DS-lean phase after phase separation. Because the [N4444][TMBS]-based DS has a significantly temperature-dependent osmotic pressure, the DS-lean phase can be concentrated to an osmotic pressure higher than that of seawater at room temperature (20 °C). In addition, water can be effectively recovered from the DS-lean phase until the DS concentration increased to 40 wt%, and the final DS concentration reached 70 wt%. From the results, the advantages of RO treatment of the thermo-responsive DS at temperatures higher than the LCST were confirmed.


2020 ◽  
Vol 6 (1) ◽  
pp. 153-165 ◽  
Author(s):  
Nur Hafizah Ab Hamid ◽  
Simon Smart ◽  
David K. Wang ◽  
Kaniel Wei Jun Koh ◽  
Kalvin Jiak Chern Ng ◽  
...  

This study systematically explores the potential applications of forward osmosis (FO) membrane based technology in urban wastewater treatment and water reclamation for their techno-economic feasibility and sustainability.


2019 ◽  
Vol 56 (12) ◽  
pp. 666-672
Author(s):  
Yasushi Mino ◽  
Daichi Ogawa ◽  
Hideto Matsuyama

Sign in / Sign up

Export Citation Format

Share Document