Fucoidan: a promising venue for the intervention of brain injury and neurodegenerative diseases

2021 ◽  
Author(s):  
Yingying Wang ◽  
Qianqian Wang ◽  
Xiao Han ◽  
Yingchao Ma ◽  
Zhenkun Zhang ◽  
...  

Brain injury and neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis are urgent medical problems, which severely threaten the life quality of patients and their caretakers....

Author(s):  
Nicolas Ruffini ◽  
Susanne Klingenberg ◽  
Susann Schweiger ◽  
Susanne Gerber

Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic Lateral Sclerosis are heterogeneous, progressive diseases with frequently overlapping symptoms characterized by a loss of neurons. Studies suggested relations between neurodegenerative diseases for many years, e.g., regarding the aggregation of toxic proteins or triggering endogenous cell death pathways. Within this study, publicly available genomic, transcriptomic and proteomic data were gathered from 188 studies and more than one million patients to detect shared genetic patterns between the neurodegenerative diseases and the analyzed omics-layers within conditions. The results show a remarkably high number of shared genes between the transcriptomic and proteomic levels for all diseases while showing a significant relation between genomic and proteomic data only in some cases. A set of 139 genes was found to be differentially expressed in several transcriptomic experiments of all four diseases. These 139 genes showed overrepresented GO-Terms and pathways mainly involved in stress response, cell development, cell adhesion, and the cytoskeleton. Furthermore, the overlap of two and three omics-layers per disease were used to search for overrepresented pathways and GO-Terms. Taken together, we could confirm the existence of many relations between Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic Lateral Sclerosis on the transcriptomic and proteomic level by analyzing the pathways and GO-Terms arising in these intersections. The significance of the connection between the transcriptomic and proteomic data for all four analyzed neurodegenerative diseases showed that exploring these omics-layers simultaneously holds new insights that do not emerge from analyzing these omics-layers separately. Our data therefore suggests addressing human patients with neurodegenerative diseases as complex biological systems by integrating multiple underlying data sources.


2016 ◽  
Vol 8 (1) ◽  
Author(s):  
Marco Orsini ◽  
Osvaldo J.M. Nascimento ◽  
Andre P.C. Matta ◽  
Carlos Henrique Melo Reis ◽  
Olivia Gameiro De Souza ◽  
...  

Thanks to the development of several new researches, the lifetime presented a significant increase, even so, we still have many obstacles to overcome − among them, manage and get responses regarding neurodegenerative diseases. Where we are in the understanding of neuroprotection? Do we really have protective therapies for diseases considered degeneratives such as amyotrophic lateral sclerosis and its variants, Parkinson’s disease, Alzheimer’s disease and many others? Neuroprotection is defined by many researches as interactions and interventions that can slow down or even inhibit the progression of neuronal degeneration process. We make some considerations on this <em>neuroprotective</em> <em>effect</em>.


2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
Yui Nakayama ◽  
Satoru Morimoto ◽  
Misao Yoneda ◽  
Shigeki Kuzuhara ◽  
Yasumasa Kokubo

Objective. Amyotrophic lateral sclerosis/parkinsonism-dementia complex is classified as one of the tauopathies. Methods. The total tau, phosphorylated tau, and amyloid β42 levels were assayed in cerebrospinal fluid from patients with Kii amyotrophic lateral sclerosis/parkinsonism-dementia complex (), Alzheimer’s disease (), Parkinson’s disease (), amyotrophic lateral sclerosis (), and controls () using specific enzyme-linked immunosorbent assay methods. Results. Total tau and phosphorylated tau did not increase and amyloid β42 was relatively reduced in Kii amyotrophic lateral sclerosis/parkinsonism-dementia complex. Relatively reduced amyloid β42 might discriminate Kii amyotrophic lateral sclerosis/parkinsonism-dementia complex from amyotrophic lateral sclerosis and Parkinson’s disease, and the ratios of phosphorylated-tau to amyloid β42 could discriminate Kii amyotrophic lateral sclerosis/parkinsonism-dementia complex from Alzheimer’s disease. Conclusions. Cerebrospinal fluid analysis may be useful to differentiate amyotrophic lateral sclerosis/parkinsonism-dementia complex from Alzheimer’s disease, amyotrophic lateral sclerosis, and Parkinson’s disease.


Sign in / Sign up

Export Citation Format

Share Document