scholarly journals Defect tolerant device geometries for lead-halide perovskites

2021 ◽  
Author(s):  
Basita Das ◽  
Zhifa Liu ◽  
Irene Aguilera ◽  
Uwe Rau ◽  
Thomas Kirchartz

The term defect tolerance is widely used in literature to describe materials such as lead-halides perovskites, where solution-processed polycrystalline thin films exhibit long non-radiative lifetimes of microseconds or longer. Studies...

Author(s):  
Tyler J. Smart ◽  
Hiroyuki Takenaka ◽  
Tuan Anh Pham ◽  
Liang Z. Tan ◽  
Jin Z. Zhang ◽  
...  

2015 ◽  
Vol 9 (7) ◽  
pp. 444-449 ◽  
Author(s):  
Sergii Yakunin ◽  
Mykhailo Sytnyk ◽  
Dominik Kriegner ◽  
Shreetu Shrestha ◽  
Moses Richter ◽  
...  

2020 ◽  
Vol 7 (7) ◽  
pp. 1902950 ◽  
Author(s):  
Randy P Sabatini ◽  
Chwenhaw Liao ◽  
Stefano Bernardi ◽  
Wenxin Mao ◽  
Matthew S. Rahme ◽  
...  

2020 ◽  
Vol 13 (6) ◽  
pp. 1888-1891
Author(s):  
Alexander Colsmann ◽  
Tobias Leonhard ◽  
Alexander D. Schulz ◽  
Holger Röhm

This comment analyzes pitfalls when investigating piezoresponse and ferroelectricity in organic-metal halide perovskite thin films.


2018 ◽  
Vol 11 (3) ◽  
pp. 702-713 ◽  
Author(s):  
Daniele Meggiolaro ◽  
Silvia G. Motti ◽  
Edoardo Mosconi ◽  
Alex J. Barker ◽  
James Ball ◽  
...  

Electron/hole traps related to interstitial iodine defects show the typical features of iodine photo-electrochemistry, inducing MAPbI3 defect tolerance.


Author(s):  
Tsung Sheng Kao ◽  
Yu-Hsun Chou ◽  
Kuo-Bin Hong ◽  
Jiong-Fu Huang ◽  
Fang-Chung Chen ◽  
...  

2019 ◽  
Vol 2 (2) ◽  
pp. 67
Author(s):  
Zhiya Dang ◽  
Duc Anh Dinh

Lead halide perovskites are the new rising generation of semiconductor materials due to their unique optical and electrical properties. The investigation of the interaction of halide perovskites and light is a key issue not only for understanding their photophysics but also for practical applications. Hence, tremendous efforts have been devoted to this topic and brunch into two: (i) decomposition of the halide perovskites thin films under light illumination; and (ii) influence of light soaking on their photoluminescence (PL) properties. In this review, we for the first time thoroughly compare the illumination conditions and the sample environment to correlate the PL changes and decomposition of perovskite under light illumination. In the case of vacuum and dry nitrogen, PL of the halide perovskite (MAPbI3–xClx, MAPbBr3–xClx, MAPbI3) thin films decreases due to the defects induced by light illumination, and under high excitations, the thin film even decomposes. In the presence of oxygen or moisture, light induces the PL enhancement of halide perovskite (MAPbI3) thin films at low light illumination, while increasing the excitation, which causes the PL to quench and perovskite thin film to decompose. In the case of mixed halide perovskite ((MA)Pb(BrxI1-x)3) light induces reversible segregation of Br domains and I domains. 


Author(s):  
Zhendong Guo ◽  
Jing Wang ◽  
Wanjian Yin

The soft lattices of lead-halide perovskites (LHPs) are responsible for their unique material properties, including polaron formation, defect tolerance, anharmonic vibration, and large electrostrictive response, which result in exotic carrier...


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yicheng Zhao ◽  
Peng Miao ◽  
Jack Elia ◽  
Huiying Hu ◽  
Xiaoxia Wang ◽  
...  

AbstractLight-induced halide segregation limits the bandgap tunability of mixed-halide perovskites for tandem photovoltaics. Here we report that light-induced halide segregation is strain-activated in MAPb(I1−xBrx)3 with Br concentration below approximately 50%, while it is intrinsic for Br concentration over approximately 50%. Free-standing single crystals of CH3NH3Pb(I0.65Br0.35)3 (35%Br) do not show halide segregation until uniaxial pressure is applied. Besides, 35%Br single crystals grown on lattice-mismatched substrates (e.g. single-crystal CaF2) show inhomogeneous segregation due to heterogenous strain distribution. Through scanning probe microscopy, the above findings are successfully translated to polycrystalline thin films. For 35%Br thin films, halide segregation selectively occurs at grain boundaries due to localized strain at the boundaries; yet for 65%Br films, halide segregation occurs in the whole layer. We close by demonstrating that only the strain-activated halide segregation (35%Br/45%Br thin films) could be suppressed if the strain is properly released via additives (e.g. KI) or ideal substrates (e.g. SiO2).


Sign in / Sign up

Export Citation Format

Share Document