Graphene quantum dot-decorated carbon electrodes for energy storage in vanadium redox flow batteries

Nanoscale ◽  
2020 ◽  
Vol 12 (14) ◽  
pp. 7834-7842 ◽  
Author(s):  
Michael C. Daugherty ◽  
Siyong Gu ◽  
Doug S. Aaron ◽  
Ryan E. Kelly ◽  
Yasser Ashraf Gandomi ◽  
...  

Nitrogen-doped graphene quantum dots (GQDs) and graphitic carbon nitride (g-C3N4) quantum dots are synthesized via a solid-phase microwave-assisted (SPMA) technique.

Nanoscale ◽  
2019 ◽  
Vol 11 (35) ◽  
pp. 16553-16561 ◽  
Author(s):  
Siyong Gu ◽  
Chien-Te Hsieh ◽  
Yasser Ashraf Gandomi ◽  
Jianlin Li ◽  
Xing Xing Yue ◽  
...  

Highly fluorescent N-doped graphene quantum dots (NGQDs) and graphitic carbon nitride quantum dots (CNQDs, g-C3N4) were synthesized using a solid-phase microwave-assisted (SPMA) technique.


2019 ◽  
Vol 7 (18) ◽  
pp. 5468-5476 ◽  
Author(s):  
Siyong Gu ◽  
Chien-Te Hsieh ◽  
Yasser Ashraf Gandomi ◽  
Jeng-Kuei Chang ◽  
Ju Li ◽  
...  

Tunable photoluminescent nitrogen-doped graphene and graphitic carbon nitride (g-C3N4) quantum dots are synthesized via a facile solid-phase microwave-assisted (SPMA) technique utilizing the pyrolysis of citric acid and urea precursors.


Nanophotonics ◽  
2017 ◽  
Vol 6 (1) ◽  
pp. 259-267 ◽  
Author(s):  
Binjie Zheng ◽  
Yuanfu Chen ◽  
Pingjian Li ◽  
Zegao Wang ◽  
Bingqiang Cao ◽  
...  

AbstractFor the first time, a facile, ultrafast, ammonia-driven microwave-assisted synthesis of high-quality nitrogen-doped graphene quantum dots (NGQDs) at room temperature and atmospheric pressure is presented. This one-step method is very cheap, environment friendly, and suitable for large-scale production. The as-synthesized NGQDs consisting of one to three graphene monolayers exhibit highly crystalline quality with an average size of 5.3 nm. A new fluorescence (FL) emission peak at 390 nm is observed, which might be attributed to the doped nitrogen atoms into the GQDs. An interesting red-shift is observed by comparing the FL excitation spectra to the UV-visible absorption spectra. Based on the optical properties, the detailed Jablonski diagram representing the energy level structure of NGQDs is derived.


2021 ◽  
Vol 623 ◽  
pp. 119077
Author(s):  
Rumwald Leo G. Lecaros ◽  
Reincess E. Valbuena ◽  
Lemmuel L. Tayo ◽  
Wei-Song Hung ◽  
Chien-Chieh Hu ◽  
...  

2021 ◽  
Author(s):  
Hemalatha Kuzhandaivel ◽  
Sornalatha Manickam ◽  
Suresh Kannan Balasingam ◽  
Manik Clinton Franklin ◽  
Hee-Je Kim ◽  
...  

Sulfur and nitrogen-doped graphene quantum dots/polyaniline nanocomposites were synthesized and their electrochemical charge storage properties were tested for supercapacitor applications.


ACS Omega ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 2167-2176
Author(s):  
Rania Adel ◽  
Shaker Ebrahim ◽  
Azza Shokry ◽  
Moataz Soliman ◽  
Marwa Khalil

Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 140
Author(s):  
Madison Frieler ◽  
Christine Pho ◽  
Bong Han Lee ◽  
Hana Dobrovolny ◽  
Giridhar R. Akkaraju ◽  
...  

With 18 million new cases diagnosed each year worldwide, cancer strongly impacts both science and society. Current models of cancer cell growth and therapeutic efficacy in vitro are time-dependent and often do not consider the Emax value (the maximum reduction in the growth rate), leading to inconsistencies in the obtained IC50 (concentration of the drug at half maximum effect). In this work, we introduce a new dual experimental/modeling approach to model HeLa and MCF-7 cancer cell growth and assess the efficacy of doxorubicin chemotherapeutics, whether alone or delivered by novel nitrogen-doped graphene quantum dots (N-GQDs). These biocompatible/biodegradable nanoparticles were used for the first time in this work for the delivery and fluorescence tracking of doxorubicin, ultimately decreasing its IC50 by over 1.5 and allowing for the use of up to 10 times lower doses of the drug to achieve the same therapeutic effect. Based on the experimental in vitro studies with nanomaterial-delivered chemotherapy, we also developed a method of cancer cell growth modeling that (1) includes an Emax value, which is often not characterized, and (2), most importantly, is measurement time-independent. This will allow for the more consistent assessment of the efficiency of anti-cancer drugs and nanomaterial-delivered formulations, as well as efficacy improvements of nanomaterial delivery.


Sign in / Sign up

Export Citation Format

Share Document