scholarly journals Understanding the role played by protic ionic liquids (PILs) and the substituent effect for enhancing the generation of Z-cinnamic acid derivatives

2020 ◽  
Vol 19 (6) ◽  
pp. 819-830 ◽  
Author(s):  
Rocío B. Rodríguez ◽  
Ramiro L. Zapata ◽  
María L. Salum ◽  
Rosa Erra-Balsells

Cinnamic acids in their PIL form are more reactive than in their pure acid forms toward photoisomerization. This knowledge is successfully used for establishing an efficient and practical synthetic protocol for synthesizing Z-cinnamic derivatives.


Author(s):  
Bin Zhao ◽  
Bo Xu

We have developed an efficient photocatalytic synthesis of coumarin derivatives via a tandem double bond isomerization/oxidative cyclization of cinnamic acids.



1989 ◽  
Vol 44 (9-10) ◽  
pp. 765-770 ◽  
Author(s):  
Hans-Adolf Arfmann ◽  
Wolf-Rainer Abraham

Various mono- and disubstituted cinnamic acid derivatives and aromatic carboxylic acids with saturated side chains were incubated mainly with Bacillus, Candida, Hansenula, and Saccharomyces strains. The cinnamic acids carrying a hydroxy- and/or a methoxy group at the 3- and/or 4-position of the benzene ring were decarboxylated with high yields. Most of the reactions were terminated within 24 to 48 h. Substitution at other ring positions afforded also decarboxylation, but at much lower yields. Derivatives with other residues like methyl, chloride, or bromide were not transform ed to the respective styrene. None of the saturated aromatic carboxylic acids could be decarboxylated by the strains used.



RSC Advances ◽  
2016 ◽  
Vol 6 (60) ◽  
pp. 55286-55297 ◽  
Author(s):  
Rebecca R. Chao ◽  
James J. De Voss ◽  
Stephen G. Bell

The cytochrome P450 enzyme, CYP199A4 oxidised para substituted alkyloxy- and alkyl-cinnamic acids, with high product formation activity.



2018 ◽  
Vol 16 (1) ◽  
pp. 36-44 ◽  
Author(s):  
Zehra Tuğçe Gür ◽  
Fatma Sezer Şenol ◽  
Suhaib Shekfeh ◽  
İlkay Erdoğan Orhan ◽  
Erden Banoğlu ◽  
...  

Background: A series of novel cinnamic acid piperazine amide derivatives has been designed and synthesized, and their biological activities were also evaluated as potential tyrosinase inhibitors. Methods: Compounds 9, 11 and 17 showed the most potent biological activity (IC50 = 66.5, 61.1 and 66 µM, respectively). In silico docking simulation was performed to position compound 11 into the Agaricus bisporus mushroom tyrosinase’s active site to determine the putative binding interactions. Results and Conclusion: The results indicated that compound 11 could serve as a promising lead compound for further development of potent tyrosinase inhibitors.



2021 ◽  
Vol 125 (5) ◽  
pp. 1416-1428
Author(s):  
Jing Ma ◽  
Yutong Wang ◽  
Xueqing Yang ◽  
Mingxuan Zhu ◽  
Baohe Wang


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4158
Author(s):  
Patrycja Glińska ◽  
Andrzej Wolan ◽  
Wojciech Kujawski ◽  
Edyta Rynkowska ◽  
Joanna Kujawa

There has been an ongoing need to develop polymer materials with increased performance as proton exchange membranes (PEMs) for middle- and high-temperature fuel cells. Poly(vinyl alcohol) (PVA) is a highly hydrophilic and chemically stable polymer bearing hydroxyl groups, which can be further altered. Protic ionic liquids (proticILs) have been found to be an effective modifying polymer agent used as a proton carrier providing PEMs’ desirable proton conductivity at high temperatures and under anhydrous conditions. In this study, the novel synthesis route of PVA grafted with fluorinated protic ionic liquids bearing sulfo groups (–SO3H) was elaborated. The polymer functionalization with fluorinated proticILs was achieved by the following approaches: (i) the PVA acylation and subsequent reaction with fluorinated sultones and (ii) free-radical polymerization reaction of vinyl acetate derivatives modified with 1-methylimidazole and sultones. These modifications resulted in the PVA being chemically modified with ionic liquids of protic character. The successfully grafted PVA has been characterized using 1H, 19F, and 13C-NMR and FTIR-ATR. The presented synthesis route is a novel approach to PVA functionalization with imidazole-based fluorinated ionic liquids with sulfo groups.



2021 ◽  
pp. 113036
Author(s):  
Emanuel A. Crespo ◽  
Liliana P. Silva ◽  
Cristina I.P. Correia ◽  
Mónia A.R. Martins ◽  
Ramesh L. Gardas ◽  
...  


2021 ◽  
Vol 23 (4) ◽  
pp. 2663-2675
Author(s):  
Viviane Overbeck ◽  
Henning Schröder ◽  
Anne-Marie Bonsa ◽  
Klaus Neymeyr ◽  
Ralf Ludwig

NMR Fast-Field-Cycling (FFC) relaxometry provides important information about translational and rotational dynamics of hydrogen bonded protic ionic liquids (PILs). 





Sign in / Sign up

Export Citation Format

Share Document