A facile PEG/thiol-functionalized nanographene oxide carrier with an appropriate glutathione-responsive switch

2020 ◽  
Vol 11 (12) ◽  
pp. 2194-2204 ◽  
Author(s):  
Bingjie Hao ◽  
Wei Li ◽  
Sen Zhang ◽  
Ying Zhu ◽  
Yongjun Li ◽  
...  

A novel nanographene oxide/PEG-based bioreduction-responsive smart drug delivery system with a GSH-responsive disulfide linker as the controlled release switch can selectively release anti-cancer drugs in cancer cells.

2019 ◽  
Vol 45 (1) ◽  
pp. 113-121 ◽  
Author(s):  
Jiaojiao Yu ◽  
Qiongyan Wang ◽  
Haofan Liu ◽  
Xiaosong Shan ◽  
Ziyan Pang ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (22) ◽  
pp. 17041-17041 ◽  
Author(s):  
Xubo Zhao ◽  
Peng Liu

Correction for ‘Biocompatible graphene oxide as a folate receptor-targeting drug delivery system for the controlled release of anti-cancer drugs’ by Xubo Zhao et al., RSC Adv., 2014, 4, 24232–24239.


RSC Advances ◽  
2014 ◽  
Vol 4 (46) ◽  
pp. 24232-24239 ◽  
Author(s):  
Xubo Zhao ◽  
Peng Liu

A novel graphene oxide (GO)-based nanocarrier has been designed for the targeting and pH-responsive controlled release of anti-cancer drugs.


Nanoscale ◽  
2015 ◽  
Vol 7 (28) ◽  
pp. 12051-12060 ◽  
Author(s):  
Tingting Zhou ◽  
Xubo Zhao ◽  
Lei Liu ◽  
Peng Liu

Monodisperse biodegradable PEGylated pH and reduction dual-stimuli sensitive PMPB nanohydrogels were prepared as a drug delivery system for controlled release anti-cancer drugs.


Nanomaterials ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 588 ◽  
Author(s):  
Xia Li ◽  
Manpreet Sambi ◽  
Alexandria DeCarlo ◽  
Sergey V. Burov ◽  
Roman Akasov ◽  
...  

Engineering of a “smart” drug delivery system to specifically target tumour cells has been at the forefront of cancer research, having been engineered for safer, more efficient and effective use of chemotherapy for the treatment of cancer. However, selective targeting and choosing the right cancer surface biomarker are critical for a targeted treatment to work. Currently, the available delivery systems use a two-dimensional monolayer of cancer cells to test the efficacy of the drug delivery system, but designing a “smart” drug delivery system to be specific for a tumour in vivo and to penetrate the inner core remains a major design challenge. These challenges can be overcome by using a study model that integrates the three-dimensional aspect of a tumour in a culture system. Here, we tested the efficacy of a functionalized folic acid-conjugated amphiphilic alternating copolymer poly(styrene-alt-maleic anhydride) (FA-DABA-SMA) via a biodegradable linker 2,4-diaminobutyric acid (DABA) to specifically target and penetrate the inner core of three-dimensional avascular human pancreatic and breast tumour spheroids in culture. The copolymer was quantitatively analyzed for its hydrophobic drug encapsulation efficiency using three different chemical drug structures with different molecular weights. Their release profiles and tumour targeting properties at various concentrations and pH environments were also characterized. Using the anticancer drug curcumin and two standard clinical chemotherapeutic hydrophobic drugs, paclitaxel and 5-fluorouracil, we tested the ability of FA-DABA-SMA nanoparticles to encapsulate the differently sized drugs and deliver them to kill monolayer pancreatic cancer cells using the WST-1 cell proliferation assay. The findings of this study revealed that the functionalized folic acid-conjugated amphiphilic alternating copolymer shows unique properties as an active “smart” tumor-targeting drug delivery system with the ability to internalize hydrophobic drugs and release the chemotherapeutics for effective killing of cancer cells. The novelty of the study is the first to demonstrate a functionalized “smart” drug delivery system encapsulated with a hydrophobic drug effectively targeting and penetrating the inner core of pancreatic and breast cancer spheroids and reducing their volumes in a dose- and time-dependent manner.


2015 ◽  
Vol 51 (8) ◽  
pp. 1475-1478 ◽  
Author(s):  
Wang Xiao ◽  
Xuan Zeng ◽  
Hang Lin ◽  
Kai Han ◽  
Hui-Zhen Jia ◽  
...  

A dual stimuli-responsive multi-drug delivery system was developed for “cancer cocktail therapy”. Release behaviors of the dual drugs could be controlled separately by appropriate stimulation.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Changzhen Sun ◽  
Ji Lu ◽  
Jun Wang ◽  
Ping Hao ◽  
Chunhong Li ◽  
...  

Abstract Background Nano-drug delivery systems show considerable promise for effective cancer therapy. Polymeric micelles have attracted extensive attention as practical nanocarriers for target drug delivery and controlled drug delivery system, however, the distribution of micelles and the release of the drug are difficult to trace in cancer cells. Therefore, the construction of a redox-sensitive multifunctional drug delivery system for intelligent release of anticancer drugs and simultaneous diagnostic imaging and therapy remains an attractive research subject. Results To construct a smart drug delivery system for simultaneous imaging and cancer chemotherapy, mPEG-ss-Tripp was prepared and self-assembled into redox-sensitive polymeric micelles with a diameter of 105 nm that were easily detected within cells using confocal laser scanning microscopy based on aggregation-induced emission. Doxorubicin-loaded micelles rapidly released the drug intracellularly when GSH reduced the disulfide bond. The drug-loaded micelles inhibited tumor xenografts in mice, while this efficacy was lower without the GSH-responsive disulfide bridge. These results establish an innovative multi-functional polymeric micelle for intracellular imaging and redox-triggered drug deliver to cancer cells. Conclusions A novel redox-sensitive drug delivery system with AIE property was constructed for simultaneous cellular imaging and intelligent drug delivery and release. This smart drug delivery system opens up new possibilities for multifunctional drug delivery systems.


2020 ◽  
Author(s):  
Changzhen Sun ◽  
Ji Lu ◽  
Jun Wang ◽  
Ping Hao ◽  
Chunhong Li ◽  
...  

Abstract Background: Nano-drug delivery systems show considerable promise for effective cancer therapy. Polymeric micelles have attracted extensive attention as practical nanocarriers for target drug delivery and controlled drug delivery system, however, the distribution of micelles and the release of the drug are difficult to trace in cancer cells. Therefore, the construction of a redox-sensitive multifunctional drug delivery system for intelligent release of anticancer drugs and simultaneous diagnostic imaging and therapy remains an attractive research subject.Results: To construct a smart drug delivery system for simultaneous imaging and cancer chemotherapy, mPEG-ss-Tripp was prepared and self-assembled into redox-sensitive polymeric micelles with a diameter of 105 nm that were easily detected within cells using confocal laser scanning microscopy based on aggregation-induced emission. Doxorubicin-loaded micelles rapidly released the drug intracellularly when GSH reduced the disulfide bond. The drug-loaded micelles inhibited tumor xenografts in mice, while this efficacy was lower without the GSH-responsive disulfide bridge. These results establish an innovative multi-functional polymeric micelle for intracellular imaging and redox-triggered drug deliver to cancer cells.Conclusions: A novel redox-sensitive drug delivery system with AIE property was constructed for simultaneous cellular imaging and intelligent drug delivery and release. This smart drug delivery system opens up new possibilities for multifunctional drug delivery systems.


2020 ◽  
Author(s):  
Changzhen Sun ◽  
Ji Lu ◽  
Jun Wang ◽  
Ping Hao ◽  
Chunhong Li ◽  
...  

Abstract Background: Nano-drug delivery systems show considerable promise for effective cancer therapy. Polymeric micelles have attracted extensive attention as practical nanocarriers for target drug delivery and controlled drug delivery system, however, the distribution of micelles and the release of the drug are difficult to trace in cancer cells. Therefore, the construction of a redox-sensitive multifunctional drug delivery system for intelligent release of anticancer drugs and simultaneous diagnostic imaging and therapy remains an attractive research subject.Results: To construct a smart drug delivery system for simultaneous imaging and cancer chemotherapy, mPEG-ss-Tripp was prepared and self-assembled into redox-sensitive polymeric micelles with a diameter of 105 nm that were easily detected within cells using confocal laser scanning microscopy based on aggregation-induced emission. Doxorubicin-loaded micelles rapidly released the drug intracellularly when GSH reduced the disulfide bond. The drug-loaded micelles inhibited tumor xenografts in mice, while this efficacy was lower without the GSH-responsive disulfide bridge. These results establish an innovative multi-functional polymeric micelle for intracellular imaging and redox-triggered drug deliver to cancer cells.Conclusions: A novel redox-sensitive drug delivery system with AIE property was constructed for simultaneous cellular imaging and intelligent drug delivery and release. This smart drug delivery system opens up new possibilities for multifunctional drug delivery systems.


Sign in / Sign up

Export Citation Format

Share Document