scholarly journals An aza-Diels–Alder route to quinoline-based unnatural amino acids and polypeptide surrogates

RSC Advances ◽  
2021 ◽  
Vol 11 (23) ◽  
pp. 14132-14139
Author(s):  
M. J. Umerani ◽  
H. Yang ◽  
P. Pratakshya ◽  
J. S. Nowick ◽  
A. A. Gorodetsky

The synthesis of quinoline-based unnatural amino acids and the subsequent preparation of polypeptide surrogates from these building blocks on solid support.

2019 ◽  
Vol 9 (11) ◽  
pp. 2199 ◽  
Author(s):  
Ruth Suchsland ◽  
Bettina Appel ◽  
Matthäus Janczyk ◽  
Sabine Müller

The use of pre-formed trinucleotides, representing codons of the 20 canonical amino acids, for oligonucleotide-directed mutagenesis offers the advantage of controlled randomization and generation of “smart libraries”. We here present a method for the preparation of fully protected trinucleotides on solid phase. The key issue of our strategy is the linkage of the starting nucleoside to the solid support via a traceless disulfide linker. Upon trinucleotide assembly, the disulfide bridge is cleaved under reducing conditions, and the fully protected trinucleotide is released with a terminal 3′-OH group.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Nan Shao ◽  
N. Sadananda Singh ◽  
Susan E. Slade ◽  
Alexandra M. E. Jones ◽  
Mohan K. Balasubramanian

Abstract The diversity of protein functions is impacted in significant part by the chemical properties of the twenty amino acids, which are used as building blocks for nearly all proteins. The ability to incorporate unnatural amino acids (UAA) into proteins in a site specific manner can vastly expand the repertoire of protein functions and also allows detailed analysis of protein function. In recent years UAAs have been incorporated in a site-specific manner into proteins in a number of organisms. In nearly all cases, the amber codon is used as a sense codon and an orthogonal tRNA/aminoacyl-tRNA synthetase (RS) pair is used to generate amber suppressing tRNAs charged with the UAA. In this work, we have developed tools to incorporate the cross-linking amino acid azido-phenylalanine (AzF) through the use of bacterial tRNATyr and a modified version of TyrRS, AzFRS, in Schizosaccharomyces pombe, which is an attractive model organism for the study of cell behavior and function. We have incorporated AzF into three different proteins. We show that the majority of AzF is modified to amino-phenyl alanine, but protein cross-linking was still observed. These studies set the stage for exploitation of this new technology for the analysis of S. pombe proteins.


2006 ◽  
Vol 103 (12) ◽  
pp. 4356-4361 ◽  
Author(s):  
M. C. T. Hartman ◽  
K. Josephson ◽  
J. W. Szostak

2001 ◽  
Vol 66 (8) ◽  
pp. 1299-1314 ◽  
Author(s):  
Michal Lebl ◽  
Christine Burger ◽  
Brett Ellman ◽  
David Heiner ◽  
Georges Ibrahim ◽  
...  

Design and construction of automated synthesizers using the tilted plate centrifugation technology is described. Wash solutions and reagents common to all synthesized species are delivered automatically through a 96-channel distributor connected to a gear pump through two four-port selector valves. Building blocks and other specific reagents are delivered automatically through banks of solenoid valves, positioned over the individual wells of the microtiterplate. These instruments have the following capabilities: Parallel solid-phase oligonucleotide synthesis in the wells of polypropylene microtiter plates, which are slightly tilted down towards the center of rotation, thus generating a pocket in each well, in which the solid support is collected during centrifugation, while the liquid is expelled from the wells. Eight microtiterplates are processed simultaneously, providing thus a synthesizer with a capacity of 768 parallel syntheses. The instruments are capable of unattended continuous operation, providing thus a capacity of over two millions 20-mer oligonucleotides in a year.


Sign in / Sign up

Export Citation Format

Share Document