scholarly journals Theoretical studies on carbon dioxide adsorption in cation-exchanged molecular sieves

RSC Advances ◽  
2020 ◽  
Vol 10 (53) ◽  
pp. 32241-32248
Author(s):  
Xin Li ◽  
Wanling Shen ◽  
Han Sun ◽  
Lingchuang Meng ◽  
Bing Wang ◽  
...  

Density functional theory was used to study the adsorption of CO2 in cation-exchanged zeolite Y, ZSM-5, CHA and A. The adsorption energies and the interactions of cations on various zeolitic topologies towards CO2 molecule was discussed.

2018 ◽  
Vol 786 ◽  
pp. 384-392 ◽  
Author(s):  
Hussein Y. Ammar

The structural and electronic properties of Li, Mg and Al deposited ZnO nanocages and their effects on the adsorption of formaldehyde molecule have been investigated using the density functional theory (DFT) computations. To understand the behavior of the adsorbed CH2O molecule on the ZnO nanocage, results of DFT calculations of the M-deposited nanocages (M=Li, Mg and Al), as well as complex systems consisting of the adsorbed CH2O molecule on M-deposited ZnO nanocage were reported. The results presented include adsorption energies, bond lengths, electronic configurations, density of states and molecular orbitals. It was found that, the most energetically stable adsorption configurations of CH2O molecule on the bare ZnO leads to 12% dilation in C=O bond length of CH2O and 14% decrease in HOMO-LUMO gap of ZnO cluster. The most energetically stable adsorption configurations of CH2O molecule on Li, Mg and Al-deposited ZnO lead to 4%, 4% and 11% dilation in C=O bond length of CH2O and-0.66, -45 and , +66% change in HOMO-LUMO gap of ZnO nanocages, respectively. The interaction between CH2O with bare ZnO and M-deposited ZnO nanocages is attributed to charge transfer mechanism. These results may be meaningful for CH2O degradation and detection.


2018 ◽  
Vol 96 (12) ◽  
pp. 993-999 ◽  
Author(s):  
Chenhong Xu ◽  
Suqin Zhou ◽  
Jing Chen ◽  
Yuxiang Wang ◽  
Lei He

The adsorption mechanism of the CO molecule on Al(111) surface has been investigated systematically at the atom-molecule level by the method of periodic density functional theory. The adsorption energies, adsorption structures, charge transfer, and density of states have been calculated in a wide range of coverage. It is found that the hcp-hollow site is the energetically favorable site. A significant positive correlation has been found between the adsorption energy (Eads) and coverage. The adsorbed CO molecules are almost perpendicular on the surface with the C atom facing the surface. There is an obvious charge transfer from Al atoms to the C atom; the Al atoms that have interaction with the C atom offer the most charge. The 4σ, 1π, and 5σ molecular orbitals of CO are found to contribute to bonding with the Al. The charges filling in the 2π molecular orbital contribute to C–O bond activation. In conclusion, the passivation of aluminum surface and the activation of CO molecule occur simultaneously in the adsorption of CO on Al surface.


2020 ◽  
Vol 44 (5) ◽  
pp. 1254-1264
Author(s):  
Shaya AL-RAQA ◽  
İpek ÖMEROĞLU ◽  
Doğan ERBAHAR ◽  
Mahmut DURMUŞ

Phenyl-4,4-di(3,6-dibutoxyphthalonitrile) (3) was synthesized by the reaction of 1,4-phenylenebisboronic acid (1) and 4-bromo-3,6-dibutoxyphthalonitrile (2), using Suzuki cross-coupling reaction. The newly synthesized compound (3) was characterized by FT-IR, MALDI-MS, ESI-MS, 1H-NMR, 13C-NMR, and 13C-DEPT-135-NMR. The fluorescence property of phenyl-4,4-di(3,6- dibutoxyphthalonitrile) (3) towards various metal ions was investigated by fluorescence spectroscopy, and it was observed thatthe compound (3) displayed a significantly ‘turn-off’ response to Fe3+, which was referred to 1:2 complex formation between ligand (3) and Fe3+. The compound was also studied via density functional theory calculations revealing the interaction mechanism of the molecule with Fe3+ ions.


2012 ◽  
Vol 51 (9) ◽  
pp. 3832-3840 ◽  
Author(s):  
Xiaofei Xu ◽  
Diego E. Cristancho ◽  
Stéphane Costeux ◽  
Zhen-Gang Wang

2019 ◽  
Vol 48 (1) ◽  
pp. 168-175 ◽  
Author(s):  
Chao Deng ◽  
Yingxin Sun ◽  
Yi Ren ◽  
Weihua Zhang

Density functional theory calculations were carried out to study the reaction mechanism of the Rh(iii)-catalyzed regioselective C–H cyanation of indole and indoline with N-cyano-N-phenyl-para-methylbenzenesulfonamide (NCTS).


2007 ◽  
Vol 06 (01) ◽  
pp. 1-12 ◽  
Author(s):  
JIAN-HUA XU ◽  
LAI-CAI LI ◽  
YAN ZHENG ◽  
JUN-LING LIU ◽  
XIN WANG

The reaction mechanisms of HNCS with CH 2 CH radical have been investigated by density functional theory (DFT). The geometries and harmonic frequencies of the reactants, intermediates, transition states and products have been calculated at the B3LYP/6-311++G(d,p) level. The results show that the reaction is very complicated. Nine possible reaction pathways were identified. The results show that the most feasible reaction channel is the hydrogen-transfer pathway CH 2 CH + HNCS → IMA1 → TSA1 → CH 2 CHH + NCS . The pathway VIC C-S addition channel ( CH 2 CH + HNCS → TSD5 → IMD4 → TSD9 → CH 2 CHS + CNH ) can also occur easily. Ethene and radical NCS is the main product of the studied reaction, and product P8 ( CH 2 CHS and CNH ) may also be observed. Compared with our previous study on the reaction HNCS + CH 2 CH , the present reaction is easier to proceed.


Sign in / Sign up

Export Citation Format

Share Document