scholarly journals Structural evolution of water and hydroxyl groups during thermal, mechanical and chemical treatment of high purity natural quartz

RSC Advances ◽  
2020 ◽  
Vol 10 (48) ◽  
pp. 29018-29030
Author(s):  
Bartłomiej A. Gaweł ◽  
Anna Ulvensøen ◽  
Katarzyna Łukaszuk ◽  
Bjørnar Arstad ◽  
Astrid Marie F. Muggerud ◽  
...  

In dry quartz stable closed liquid micron-size inclusions and newly formed OH groups were observed after thermal treatment.

2021 ◽  
Vol 174 ◽  
pp. 107238
Author(s):  
Bartłomiej A. Gaweł ◽  
Anna Ulvensøen ◽  
Katarzyna Łukaszuk ◽  
Astrid Marie F. Muggerud ◽  
Andreas Erbe

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1172
Author(s):  
Ádám Prekob ◽  
Mahitha Udayakumar ◽  
Gábor Karacs ◽  
Ferenc Kristály ◽  
Gábor Muránszky ◽  
...  

Glassy carbon foam (GCF) catalyst supports were synthesized from waste polyurethane elastomers by impregnating them in sucrose solution followed by pyrolysis and activation (AC) using N2 and CO2 gas. The palladium nanoparticles were formed from Pd(NO3)2. The formed palladium nanoparticles are highly dispersive because the mean diameters are 8.0 ± 4.3 (Pd/GCF), 7.6 ± 4.2 (Pd/GCF-AC1) and 4.4 ± 1.6 nm (Pd/GCF-AC2). Oxidative post-treatment by CO2 of the supports resulted in the formation of hydroxyl groups on the GCF surfaces, leading to a decrease in zeta potential. The decreased zeta potential increased the wettability of the GCF supports. This, and the interactions between –OH groups and Pd ions, decreased the particle size of palladium. The catalysts were tested in the hydrogenation of nitrobenzene. The non-treated, glassy-carbon-supported catalyst (Pd/GCF) resulted in a 99.2% aniline yield at 293 K and 50 bar hydrogen pressure, but the reaction was slightly slower than other catalysts. The catalysts on the post-treated (activated) supports showed higher catalytic activity and the rate of hydrogenation was higher. The maximum attained aniline selectivities were 99.0% (Pd/GCF-AC1) at 293 K and 98.0% (Pd/GCF-AC2) at 323 K.


2000 ◽  
Vol 36 (4) ◽  
pp. 404-410 ◽  
Author(s):  
V. G. Plotnichenko ◽  
V. O. Sokolov ◽  
E. M. Dianov

2012 ◽  
Vol 622-623 ◽  
pp. 1779-1783
Author(s):  
Richard Appiah-Ntiamoah ◽  
Xuan Thang Mai ◽  
Francis W.Y. Momade ◽  
Hern Kim

In this study, the adsorption capacity of expanded perlite (EP) for benzene at low concentrations in water was investigated after EP was treated with sodium hydroxide (NaOH). IR spectra used to characterize the modified EP showed that there was no bonding between NaOH and the hydroxyl groups on the surface of EP. However, the NaOH provided a basic medium for negatively charged surface oxide ions (-SO-) to form on EP. This fact was corroborated by pH readings of the modification solution. This reduced in pH from 10 to 9 at the end of the reaction which indicated that the hydroxyl OH- groups on the EP underwent deprotonation and hence releases H+ into the solution, and also positive sites on EP adsorbed OH- ions from the base solution. Mahir et al. in their paper Zeta potential of unexpanded and expanded perlite samples in various electrolyte media confirmed that EP has no isoelectric point and exhibits negative zeta potential in the pH range of 2-11. The surface oxides (-SO-) were believed to have given EP it adsorptive potential. Adsorption isotherm values correlated reasonably well with the Langmuir isotherm model and it parameters (qo and K) were obtained using linear regression analysis. A maximum adsorption capacity (qo) value of 19.42 mg/g was achieved.


1976 ◽  
Vol 54 (14) ◽  
pp. 2228-2230 ◽  
Author(s):  
Ted Schaefer ◽  
J. Brian Rowbotham

The conformational preferences in CCl4 solution at 32 °C of the hydroxyl groups in bromine derivatives of 1,3-dihydroxybenzene are deduced from the long-range spin–spin coupling constants between hydroxyl protons and ring protons over five bonds. Two hydroxyl groups hydrogen bond to the same bromine substituent in 2-bromo-1,3-dihydroxybenzene but prefer to hydrogen bond to different bromine substituents when available, as in 2,4-dibromo-1,3-dihydroxybenzene. When the OH groups can each choose between two ortho bromine atoms, as in 2,4,6-tribromoresorcinol, they apparently do so in a very nearly statistical manner except that they avoid hydrogen bonding to the common bromine atom.


2017 ◽  
Vol 17 (1) ◽  
pp. 95 ◽  
Author(s):  
Sri Sudiono ◽  
Mustika Yuniarti ◽  
Dwi Siswanta ◽  
Eko Sri Kunarti ◽  
Triyono Triyono ◽  
...  

Humic acid (HA) extracted from peat soil according to the recommended procedure of the International Humic Substances Society (IHSS) has been tested to remove AuCl4- from aqueous solution. The removal was optimum at pH 2.0 and it was mainly dictated by attachment through hydrogen bonding to unionized carboxyl (–COOH) groups and reduction by the action of the hydroxyl (–OH) groups to gold (Au) metal. The removal of AuCl4- improved after HA was purified through repeated immersion and shaking in a mixed solution containing 0.1 M HCl and 0.3 M HF. When the purification led to the sharp decrease in ash content from 39.34 to 0.85% (w/w) and significant increase in both the –COOH and –OH contents from 3240 to 3487 mmol/kg and from 4260 to 4620 mmol/kg, respectively; the removal of AuCl4- improved from 0.105 to 0.133 mmol/g. This improvement of AuCl4- removal by the purified HA was accompanied by higher ability in reduction to Au metal. The attached AuCl4- on –COOH groups of both crude and purified HAs was qualitatively observed by the characterization result of FT-IR spectroscopy, while the presence of Au metal on the surface of those HAs was verified by the characterization result of XRD.


1988 ◽  
Vol 91 (2) ◽  
pp. 269-279
Author(s):  
N.F. Owens ◽  
D. Gingell ◽  
A. Trommler

We have studied cells on chemically defined monomolecular films of the long-chain alcohol docosanol. Langmuir-Blodgett films of the alcohol were deposited on glass coverslips, previously made hydrophobic with octadecyl groups. This gives films in which the alcohol headgroups face outwards to the water. Molecular orientation and film integrity were shown by a fluorescence adsorption test. Cell contacts on the films were observed in media without proteins by interference reflection microscopy (IRM) and the mechanics of detachment were examined by hydrodynamic shearing in a flow chamber. Cell contact with docosanol was compared with that on an adjacent area of octadecyl glass without a monolayer. Dictyostelium amoebae settled and spread on both docosanol and octadecyl glass, but little or no locomotion was seen on docosanol. On octadecyl glass the amoebae moved actively, forming ultrathin cytoplasmic lamellae, which look dark under IRM, and left distinctive trails of membranous debris. Hydrodynamic shearing showed that the amoebae stuck strongly to both surfaces and could not be removed from either at the maximum attainable wall shear stress of 6Nm-2. Red blood cells also adhered to both surfaces and removal from both occurred between 1 and 3Nm-2. IRM and scanning electron microscopy (SEM) studies indicated that this force leads to a minimal measure of red cell adhesion, since removal often involved the breakage of cytoplasmic tethers. Our results show that alcoholic -OH groups, in a two-dimensional array, provide a surface that is strongly adhesive for cells. No other method has made it possible to demonstrate cell adhesion purely to -OH groups, in a known orientation and density, and in the absence of any other functional groups on the interface.


Sign in / Sign up

Export Citation Format

Share Document