scholarly journals Development of Highly Efficient, Glassy Carbon Foam Supported, Palladium Catalysts for Hydrogenation of Nitrobenzene

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1172
Author(s):  
Ádám Prekob ◽  
Mahitha Udayakumar ◽  
Gábor Karacs ◽  
Ferenc Kristály ◽  
Gábor Muránszky ◽  
...  

Glassy carbon foam (GCF) catalyst supports were synthesized from waste polyurethane elastomers by impregnating them in sucrose solution followed by pyrolysis and activation (AC) using N2 and CO2 gas. The palladium nanoparticles were formed from Pd(NO3)2. The formed palladium nanoparticles are highly dispersive because the mean diameters are 8.0 ± 4.3 (Pd/GCF), 7.6 ± 4.2 (Pd/GCF-AC1) and 4.4 ± 1.6 nm (Pd/GCF-AC2). Oxidative post-treatment by CO2 of the supports resulted in the formation of hydroxyl groups on the GCF surfaces, leading to a decrease in zeta potential. The decreased zeta potential increased the wettability of the GCF supports. This, and the interactions between –OH groups and Pd ions, decreased the particle size of palladium. The catalysts were tested in the hydrogenation of nitrobenzene. The non-treated, glassy-carbon-supported catalyst (Pd/GCF) resulted in a 99.2% aniline yield at 293 K and 50 bar hydrogen pressure, but the reaction was slightly slower than other catalysts. The catalysts on the post-treated (activated) supports showed higher catalytic activity and the rate of hydrogenation was higher. The maximum attained aniline selectivities were 99.0% (Pd/GCF-AC1) at 293 K and 98.0% (Pd/GCF-AC2) at 323 K.

2012 ◽  
Vol 622-623 ◽  
pp. 1779-1783
Author(s):  
Richard Appiah-Ntiamoah ◽  
Xuan Thang Mai ◽  
Francis W.Y. Momade ◽  
Hern Kim

In this study, the adsorption capacity of expanded perlite (EP) for benzene at low concentrations in water was investigated after EP was treated with sodium hydroxide (NaOH). IR spectra used to characterize the modified EP showed that there was no bonding between NaOH and the hydroxyl groups on the surface of EP. However, the NaOH provided a basic medium for negatively charged surface oxide ions (-SO-) to form on EP. This fact was corroborated by pH readings of the modification solution. This reduced in pH from 10 to 9 at the end of the reaction which indicated that the hydroxyl OH- groups on the EP underwent deprotonation and hence releases H+ into the solution, and also positive sites on EP adsorbed OH- ions from the base solution. Mahir et al. in their paper Zeta potential of unexpanded and expanded perlite samples in various electrolyte media confirmed that EP has no isoelectric point and exhibits negative zeta potential in the pH range of 2-11. The surface oxides (-SO-) were believed to have given EP it adsorptive potential. Adsorption isotherm values correlated reasonably well with the Langmuir isotherm model and it parameters (qo and K) were obtained using linear regression analysis. A maximum adsorption capacity (qo) value of 19.42 mg/g was achieved.


1976 ◽  
Vol 54 (14) ◽  
pp. 2228-2230 ◽  
Author(s):  
Ted Schaefer ◽  
J. Brian Rowbotham

The conformational preferences in CCl4 solution at 32 °C of the hydroxyl groups in bromine derivatives of 1,3-dihydroxybenzene are deduced from the long-range spin–spin coupling constants between hydroxyl protons and ring protons over five bonds. Two hydroxyl groups hydrogen bond to the same bromine substituent in 2-bromo-1,3-dihydroxybenzene but prefer to hydrogen bond to different bromine substituents when available, as in 2,4-dibromo-1,3-dihydroxybenzene. When the OH groups can each choose between two ortho bromine atoms, as in 2,4,6-tribromoresorcinol, they apparently do so in a very nearly statistical manner except that they avoid hydrogen bonding to the common bromine atom.


2017 ◽  
Vol 17 (1) ◽  
pp. 95 ◽  
Author(s):  
Sri Sudiono ◽  
Mustika Yuniarti ◽  
Dwi Siswanta ◽  
Eko Sri Kunarti ◽  
Triyono Triyono ◽  
...  

Humic acid (HA) extracted from peat soil according to the recommended procedure of the International Humic Substances Society (IHSS) has been tested to remove AuCl4- from aqueous solution. The removal was optimum at pH 2.0 and it was mainly dictated by attachment through hydrogen bonding to unionized carboxyl (–COOH) groups and reduction by the action of the hydroxyl (–OH) groups to gold (Au) metal. The removal of AuCl4- improved after HA was purified through repeated immersion and shaking in a mixed solution containing 0.1 M HCl and 0.3 M HF. When the purification led to the sharp decrease in ash content from 39.34 to 0.85% (w/w) and significant increase in both the –COOH and –OH contents from 3240 to 3487 mmol/kg and from 4260 to 4620 mmol/kg, respectively; the removal of AuCl4- improved from 0.105 to 0.133 mmol/g. This improvement of AuCl4- removal by the purified HA was accompanied by higher ability in reduction to Au metal. The attached AuCl4- on –COOH groups of both crude and purified HAs was qualitatively observed by the characterization result of FT-IR spectroscopy, while the presence of Au metal on the surface of those HAs was verified by the characterization result of XRD.


1988 ◽  
Vol 91 (2) ◽  
pp. 269-279
Author(s):  
N.F. Owens ◽  
D. Gingell ◽  
A. Trommler

We have studied cells on chemically defined monomolecular films of the long-chain alcohol docosanol. Langmuir-Blodgett films of the alcohol were deposited on glass coverslips, previously made hydrophobic with octadecyl groups. This gives films in which the alcohol headgroups face outwards to the water. Molecular orientation and film integrity were shown by a fluorescence adsorption test. Cell contacts on the films were observed in media without proteins by interference reflection microscopy (IRM) and the mechanics of detachment were examined by hydrodynamic shearing in a flow chamber. Cell contact with docosanol was compared with that on an adjacent area of octadecyl glass without a monolayer. Dictyostelium amoebae settled and spread on both docosanol and octadecyl glass, but little or no locomotion was seen on docosanol. On octadecyl glass the amoebae moved actively, forming ultrathin cytoplasmic lamellae, which look dark under IRM, and left distinctive trails of membranous debris. Hydrodynamic shearing showed that the amoebae stuck strongly to both surfaces and could not be removed from either at the maximum attainable wall shear stress of 6Nm-2. Red blood cells also adhered to both surfaces and removal from both occurred between 1 and 3Nm-2. IRM and scanning electron microscopy (SEM) studies indicated that this force leads to a minimal measure of red cell adhesion, since removal often involved the breakage of cytoplasmic tethers. Our results show that alcoholic -OH groups, in a two-dimensional array, provide a surface that is strongly adhesive for cells. No other method has made it possible to demonstrate cell adhesion purely to -OH groups, in a known orientation and density, and in the absence of any other functional groups on the interface.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3488 ◽  
Author(s):  
Masanori Suzuki ◽  
Shigehiro Maruyama ◽  
Norimasa Umesaki ◽  
Toshihiro Tanaka

Porous glass was prepared by the hydrothermal reaction of sodium borosilicate glass, and oxygen-ion characterization was used to identify the hydroxyl groups in its surface area. A substantial amount of “water” was introduced into the ionic structure as either OH− groups or H2O molecules through the hydrothermal reaction. When the hydrothermally treated glass was reheated at normal pressures, a porous structure was formed due to the low-temperature foaming resulting from the evaporation of H2O molecules and softening of the glass. Although it was expected that the OH− groups would remain in the porous glass, their distribution required clarification. Oxygen K-edge X-ray absorption fine structure (XAFS) spectroscopy enables the bonding states of oxygen ions in the surface area and interior to be characterized using the electron yield (EY) and fluorescence yield (FY) mode, respectively. The presence of OH− groups was detected in the O K-edge XAFS spectrum of the porous glass prepared by hydrothermal reaction with a corresponding pre-edge peak energy of 533.1 eV. In addition, comparison of the XAFS spectra obtained in the EY and FY modes revealed that the OH− groups were mainly distributed in the surface area (depths of several tens of nanometers).


2005 ◽  
Vol 288-289 ◽  
pp. 109-112
Author(s):  
H. Hosseinkhani ◽  
T. Aoyama ◽  
O. Ogawa ◽  
Yasuhiko Tabata

Tumor targeting of plasmid DNA was achieved through the conjugation of dextran derivative with chelate residue based on metal coordination. Spermine (Sm) was chemically introduced to the hydroxyl groups of dextran to obtain dextran-Sm derivative. A negative zeta potential of plasmid DNA became almost 0 mV by the Zn2+-coordinated conjugation with the dextran-Sm When the dextran-Sm-plasmid DNA conjugate with Zn2+ coordination was intravenously injected to mice subcutaneously bearing Meth-AR-1 fibrosarcoma, the dextran- Sm-plasmid DNA conjugate significantly enhanced the level of gene expression in the tumor, in contrast to free plasmid DNA..


2019 ◽  
Vol 92 (3) ◽  
pp. 337-346
Author(s):  
Raluca Pop

The antioxidant properties of six flavonols -fisetin, galangin, gossipetin, kaempferol, morin and myricetin- have been investigated at HF/6-311G+(d,p) level of theory, using ethanol as solvent. Three known antioxidant mechanisms, namely HAT (hydrogen atom transfer), SET-PT (single electron transfer followed by proton transfer) and SPLET (sequential proton loss electron transfer) have been employed in order to evaluate the radical scavenging abilities of the investigated compounds. Thermodynamic parameters like bond dissociation energy (BDE), proton affinity (PA), electron transfer enthalpy (ETE), ionization potential (IP) and proton dissociation enthalpy (PDE) were calculated and the results were associated with the number and the positions of the hydroxyl groups, the geometry of the parent molecule and of the corresponding radicals, as well as with the electron spin distribution. Also, computations of global reactivity descriptors like HOMO-LUMO gap showed that an increased reactivity is related to the presence of the catechol moiety (gossipetin, myricetin, fisetin). The influence of the catecholic OH groups is also outlined by the HOMO energies, highest electron-donor ability being obtained for gossipetin, the flavonol with two catecholic moieties on rings A and B. According to the HAT mechanism, it has been outlined an enhanced antioxidant character of the 3-OH groups, followed by the hydroxyl groups attached to the phenyl ring B. The calculated values of the condensed Fukui functions, computed for a radical attack, are in good agreement with the above-mentioned results.


2012 ◽  
Vol 76 ◽  
pp. 288-291 ◽  
Author(s):  
Zhongping Li ◽  
Jiali Zhang ◽  
Yanhong Zhou ◽  
Shaomin Shuang ◽  
Chuan Dong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document