scholarly journals Crystalline phase regulation of anatase–rutile TiO2 for the enhancement of photocatalytic activity

RSC Advances ◽  
2020 ◽  
Vol 10 (71) ◽  
pp. 43592-43598
Author(s):  
Kuang Wang ◽  
Yan Zhuo ◽  
Jiayi Chen ◽  
Dawei Gao ◽  
Yu Ren ◽  
...  

Biphasic TiO2 with adjustable crystalline phases was prepared by the hydrothermal-calcination method assisted by nitric acid (HNO3) and hydrogen peroxide (H2O2), using potassium titanate oxalate (K2TiO(C2O4)2) as the titanium source.

2020 ◽  
Vol 56 (59) ◽  
pp. 8190-8193
Author(s):  
Mio Nagamitsu ◽  
Kenta Awa ◽  
Hiroaki Tada

Thin heteroepitaxial layers of RuO2 were formed on the TiO2 surface of Au nanoparticle-loaded rutile TiO2, and this three-component nanohybrid exhibits a high photocatalytic activity for hydrogen peroxide generation from water and oxygen.


2015 ◽  
Vol 19 (0) ◽  
pp. 55-58
Author(s):  
Zhen-xue Liu ◽  
◽  
Zhong-xue Gan ◽  
Jun-jie Gu ◽  
Qing-feng Song

2014 ◽  
Vol 70 (2) ◽  
Author(s):  
Mohamad Azuwa Mohamed ◽  
Wan Norharyati Wan Salleh ◽  
Juhana Jaafar ◽  
Norhaniza Yusof

The evolution of desirable physico-chemical properties in high performance photocatalyst materials involves steps that must be carefully designed, controlled, and optimized. This study investigated the role of key parameter in the preparation and photocatalytic activity analysis of the mixed phase of anatase/rutile TiO2 nanoparticles, prepared via sol-gel method containing titanium-n-butoxide Ti(OBu)4 as a precursor material, nitric acid as catalyst, and isopropanol as solvent. The prepared TiO2 nanoparticles were characterized by means of XRD, SEM, and BET analyses, and UV-Vis-NIR spectroscopy. The results indicated that the calcination temperature play an important role in the physico-chemical properties and photocatalytic activity of the resulting TiO2 nanoparticles. Different calcination temperatures would result in different composition of anatase and rutile. The photocatalytic activity of the prepared mixed phase of anatase/rutile TiO2 nanoparticles was measured by photodegradation of 50 ppm phenol in an aqueous solution. The commercial anatase from Sigma-Aldrich and Degussa P25 were used for comparison purpose. The mixed phase of anatase/rutile TiO2 nanoparticles (consists of 38.3% anatase and 61.7% rutile) that was prepared at 400°C exhibited the highest photocatalytic activity of 84.88% degradation of phenol. The result was comparable with photocatalytic activity demonstrated by Degussa P25 by 1.54% difference in phenol degradation. The results also suggested that the mixed phase of anatase/rutile TiO2 nanoparticles is a promising candidate for the phenol degradation process. The high performance of photocatalyst materials may be obtained by adopting a judicious combination of anatase/rutile and optimized calcination conditions.


2009 ◽  
Vol 52 (1) ◽  
pp. 93-98 ◽  
Author(s):  
Cristiane Soído ◽  
Maurício Carvalho Vasconcellos ◽  
Antônia Gonçalves Diniz ◽  
Jairo Pinheiro

The complexometric method is usually applied to quantitative calcium determination in different materials; however the application of this method to calcium determination in molluscs shells infers significant interferences to the results. The snail Bradybaena similaris, a terrestrial gastropod, was used as experimental model to the improvement of this method. The shells were calcinated and dissolved in nitric acid, the hydrogen peroxide was also used to clarify the medium after the acid addition. The calcination procedure and the use of nitric acid reduced the significantly the interferences, allowing a major degree of destruction of the organic substances of the shell. The improvement of the calcium determination technique usually employed showed calcium content of 874.24 ± 56.617 mg of CaCO3/g of ash in comparison to the conventional technique that allowed the determination of 607.79 ± 67.751 mg of CaCO3/g of shell, wet weight.


Sign in / Sign up

Export Citation Format

Share Document