scholarly journals Chemical synthesis and immunological evaluation of new generation multivalent anticancer vaccines based on a Tn antigen analogue

2020 ◽  
Vol 11 (17) ◽  
pp. 4488-4498
Author(s):  
Carlo Pifferi ◽  
Ane Ruiz-de-Angulo ◽  
David Goyard ◽  
Claire Tiertant ◽  
Nagore Sacristán ◽  
...  

A fully-synthetic anticancer vaccine candidate incorporating an hexadecavalent Tn antigen analogue display via oxime linkages induced tumor-specific IgG antibodies and cellular immune responses in mice coadministered with QS-21 as an adjuvant.

2020 ◽  
Vol 10 (1) ◽  
pp. 137-144
Author(s):  
A. P. Toptygina ◽  
Yu. Yu. Andreev ◽  
M. A. Smerdova ◽  
A. Yu. Zetkin ◽  
T. G. Klykova

Despite adherence to the policy of mass measles vaccination in the majority of countries, this infection still remains far from being fully eradicated. Measles outbreaks are reported worldwide, when the vast majority of cases are recorded in subjects of 18—35 years of age. Studies on assessing measles IgG antibody level in different regions of Russia reveal increased percentage of measles seronegative subjects among young adults. Current study was aimed at investigating formation of humoral and cellular immunity after measles vaccination in seronegative adults aged 18 to 30 years old. There were enrolled 50 measles seronegative healthy volunteers aged 18 to 30 years old. Level of anti-measles IgM and IgG antibodies was measured by ELISA (Vector-Best, Russia). Subclasses of measles specific IgG antibodies were analyzed by ELISA, by replacing IgG conjugate for IgG1, IgG2, IgG3, IgG4 conjugates, whereas measles specific IgA antibodies were estimated by ELISA with IgA conjugate (Polygnost, Russia) at a concentration of 1 μg/ml. Antibody avidity was assessed by ELISA (Euroimmun, Germany). Cell-mediated measles immunity was estimated by CD107a surface expression on CD8hi T cell subset stimulated by measles virus-derived antigens. A specific cellular response to measles antigens before vaccination was detected in 50% of examined subjects, whereas 40% samples showed no signs of cellular immune response, with 10% of remaining cases described as equivocal. It was found that 6 weeks after vaccination all vaccinated subjects developed measles specific IgG antibodies at protective level reaching 1.33 (0.85—1.82) IU/ml [Me (LQ—UQ)]. Anti-measles IgA antibodies were of 0.655 (0.423—1.208) IU/ml [Me (LQ—UQ)]. However, no measles specific IgM antibodies were detected 6 weeks after vaccination. In addition, primary type of immune response (dominant low-avidity anti-measles antibodies IgG3 subclass) to measles vaccination was observed in 24 out of 50 subjects, whereas 26 subjects developed secondary type of immune response (high-avidity anti-measles antibodies dominated by IgG1 subclass). A measles specific cellular immune response was observed in 47 of the 50 examined subjects, and in 3 volunteers it was equivocal. Further analysis revealed a cohort of subjects who were not vaccinated against measles (18 subjects), although 60% of them provided medical record on previous dual measles vaccination occurred in childhood. Another cohort consisted of subjects who had medical record of measles vaccination in childhood (32 subjects), but lost protective measles antibodies produced by plasma cells (23 subjects), and memory T cells (3 subjects), or measles antibodies and memory B cells (6 subjects) over time. Such pattern evidences that measles-specific cellular and humoral arms immune responses were developed and maintained independently of each other.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 516
Author(s):  
Shuyi Yang ◽  
Keith R. Jerome ◽  
Alexander L. Greninger ◽  
Joshua T. Schiffer ◽  
Ashish Goyal

While SARS-CoV-2 specific neutralizing antibodies have been developed for therapeutic purposes, the specific viral triggers that drive the generation of SARS-CoV-2 specific IgG and IgM antibodies remain only partially characterized. Moreover, it is unknown whether endogenously derived antibodies drive viral clearance that might result in mitigation of clinical severity during natural infection. We developed a series of non-linear mathematical models to investigate whether SARS-CoV-2 viral and antibody kinetics are coupled or governed by separate processes. Patients with severe disease had a higher production rate of IgG but not IgM antibodies. Maximal levels of both isotypes were governed by their production rate rather than different saturation levels between people. Our results suggest that an exponential surge in IgG levels occurs approximately 5–10 days after symptom onset with no requirement for continual antigenic stimulation. SARS-CoV-2 specific IgG antibodies appear to have limited to no effect on viral dynamics but may enhance viral clearance late during primary infection resulting from the binding effect of antibody to virus, rather than neutralization. In conclusion, SARS-CoV-2 specific IgG antibodies may play only a limited role in clearing infection from the nasal passages despite providing long-term immunity against infection following vaccination or prior infection.


2017 ◽  
Vol 78 ◽  
pp. 175
Author(s):  
Rex Friedlander ◽  
Essa Abuhelaiqa ◽  
Prabhakar Putheti ◽  
Arvind K. Menon ◽  
Vijay K. Sharma ◽  
...  

1993 ◽  
Vol 35 (4) ◽  
pp. 361-365 ◽  
Author(s):  
Cláudio L. Rossi ◽  
Emilia E. H. Takahashi ◽  
Cláudia D. Partel ◽  
Lívia G.V.L. Teodoro ◽  
Luiz J. da Silva

Total serum IgE, and Strongyloides - specific IgG and IgA antibodies were studied in 27 patients with parasitologically proven strongyloidiasis. Clinical manifestations in this case series were investigated by a restrospective study of the patient's records. Total serum IgE levels were elevated (greater than 250 IU/ml) in 59% of the patients (mean concentration = 1364 IU/ml). Parasite - specific IgG and IgA antibodies were detected by ELISA in the serum of 23 (85.2%) and 21 (77.8%) patients, respectively. Elevated serum IgE and clinical manifestations were not useful indexes of the presence of strongyloidiasis. On the other hand, our results support the view that serologic tests, particularly ELISA for detecting Strongyloides - specific IgG antibodies, can be usefully exploited for diagnostic purposes in strongyloidiasis.


2018 ◽  
Vol 87 (2) ◽  
Author(s):  
Patrick M. Meyer Sauteur ◽  
Adrianus C. J. M. de Bruijn ◽  
Catarina Graça ◽  
Anne P. Tio-Gillen ◽  
Silvia C. Estevão ◽  
...  

ABSTRACTAntibody responses toMycoplasma pneumoniaecorrelate with pulmonaryM. pneumoniaeclearance. However,M. pneumoniae-specific IgG antibodies can cross-react with the myelin glycolipid galactocerebroside (GalC) and cause neurological disorders. We assessed whether antiglycolipid antibody formation is part of the physiological immune response toM. pneumoniae. We show that antibodies againstM. pneumoniaeproteins and glycolipids arise in serum ofM. pneumoniae-infected children and mice. Although antibodies toM. pneumoniaeglycolipids were mainly IgG, anti-GalC antibodies were only IgM. B-1a cells, shown to aid in protection against pathogen-derived glycolipids, are lacking in Bruton tyrosine kinase (Btk)-deficient mice.M. pneumoniae-infected Btk-deficient mice developedM. pneumoniae-specific IgG responses toM. pneumoniaeproteins but not toM. pneumoniaeglycolipids, including GalC. The equal recovery fromM. pneumoniaeinfection in Btk-deficient and wild-type mice suggests that pulmonaryM. pneumoniaeclearance is predominantly mediated by IgG reactive withM. pneumoniaeproteins and thatM. pneumoniaeglycolipid-specific IgG or IgM is not essential. These data will guide the development ofM. pneumoniae-targeting vaccines that avoid the induction of neurotoxic antibodies.


Sign in / Sign up

Export Citation Format

Share Document